When doing audio and video sentiment recognition, I found that a lot of code is duplicated, often a function in different time debugging for a long time, based on this problem, I want to manage all the previous work, organized into an open source library can be iterative. For their own use and others.

Overview

FastAudioVisual license

Our project is developed here. The goal finish time is March 01, 2021

What is FastAudioVisual?

FastAudioVisual is a tool that allows us to develop and analyse research in the audiovisual domain. The framework of this model as follow: 在这里插入图片描述

As we can see that this project has five parts. Here is the detail of each part.

  1. DataRegular: It causes many questions due to different file structure in some research. In this work, we develop a series of functions to make your database regular with the next step. All of these funfunctions arested and regular by RAVDESS which is a big database in multimodal emotion recognition.

  2. FeatureExtract: Features extraction is important for model study. There are many features can be extracted for input. For audio, MFCC, FBank, crossing-zero rate and soon on can be used. For visual, gray, RGB, optical flow diagram can be used. In this part, we will build some API to extract these features.

  3. SampleModel: With the develop of hardwares, deep learning has got siginificant improvement in every area. Many area has been regular by deep learning. Therefore, we collect some classical model for basic research. This part will make you have a enough evaluate and experiment. (In the beginning, I struggled to choose Pytorch and fastai).

  4. ModelDesign: In this part, we focus on audiovisual fusion method and model design for audiovisual other domain( including loss , framework, other trick.). It collect some research work and code. Also, we can replace simplemodel into this part. Making the result is better.

  5. Analysis: Based on above parts, we will using some tool to analysis the result of this experiment. Such as confusion matrix, CAM, feature distrbution.

  6. Test: Some demo for using this project.

  7. Others: It includes some paper or blog for this area.

In general, All of these design is for developing your audiovisual research fastly by this ttool!

Develop and Iteration

3. 功能内容与具体

4. 后期维护与迭代

Installation

You can install, upgrade, uninstall count-line with these commands(without $):

$ pip install FastAudioVisual
$ pip install --upgrade FastAudioVisual
$ pip unstall FastAudioVisual

Help

usage: line.py [-h] [-s SUFFIX | -f FILTER] [-d]

count the amount of lines and files under the current directory

optional arguments:
  -h, --help            show this help message and exit
  -s SUFFIX, --suffix SUFFIX
                        count by suffix file name, format: .suffix1.suffix2...
                        e.g: .cpp.py (without space)
  -f FILTER, --filter FILTER
                        count without filter name, format: .suffix1.suffix2...
                        e.g: .cpp.py (without space)
  -d, --detail          show detail results

Examples

  1. Count all files under the current directory:
$ line
Search in /Users/macbook/Desktop/Examples1/
file count: 4
line count: 373
  1. Count all files under the current directory with detail results:
$ line -d
Search in /Users/macbook/Desktop/Examples2/

		========================================
		文件后缀名	文件数		总行数
		

		   .py		5		397
		

		   .cpp		240		11346
		

		总文件数: 245	总行数: 11743
		========================================
		

  1. Count specified files under the current directory, using -s to pass suffix as parameters, if there are more than one parameter, don't have space, for example, count cpp files and python files:
$ line -s .cpp.py
Search in /Users/macbook/Desktop/Examples3/
file count: 3
line count: 243
$ line -s .cpp.py -d
Search in /Users/macbook/Desktop/Examples3/

		========================================
		文件后缀名	文件数		总行数
		

		   .py		5		397
		

		   .cpp		240		11346
		

		总文件数: 245	总行数: 11743
		========================================
		
  1. Count files under the current directory with filter:
$ line -f .py -d
Search in /Users/macbook/Desktop/Examples4/

		========================================
		文件后缀名	文件数		总行数
		

		   .cpp		240		11346
		

		总文件数: 240	总行数: 11528
		========================================
$ line -d
Search in /Users/macbook/Desktop/Examples4/

		========================================
		文件后缀名	文件数		总行数
		

		   .py		5		397
		

		   .cpp		240		11346
		

		总文件数: 245	总行数: 11743
		========================================

		
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

Facebook Research 605 Jan 02, 2023
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022
Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR

Speech_38_ru_commands Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR Программа умеет распознавать 38 ключевы

Andrey 9 May 05, 2022
Comprehensive-E2E-TTS - PyTorch Implementation

A Non-Autoregressive End-to-End Text-to-Speech (text-to-wav), supporting a family of SOTA unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultima

Keon Lee 114 Nov 13, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
BiQE: Code and dataset for the BiQE paper

BiQE: Bidirectional Query Embedding This repository includes code for BiQE and the datasets introduced in Answering Complex Queries in Knowledge Graph

Bhushan Kotnis 1 Oct 20, 2021
Constituency Tree Labeling Tool

Constituency Tree Labeling Tool The purpose of this package is to solve the constituency tree labeling problem. Look from the dataset labeled by NLTK,

张宇 6 Dec 20, 2022
A CSRankings-like index for speech researchers

Speech Rankings This project mimics CSRankings to generate an ordered list of researchers in speech/spoken language processing along with their possib

Mutian He 19 Nov 26, 2022
Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

2 Dec 29, 2022
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

Amazon 69 Jan 03, 2023
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022