Textlesslib - Library for Textless Spoken Language Processing

Overview

textlesslib

License: MIT Python 3.8 Code style: black

Textless NLP is an active area of research that aims to extend NLP techniques to work directly on spoken language. By using self-supervisedly learnt discrete speech representations, the area promises to unlock interesting NLP applications on languages without written form or on facets of spoken language that are unaccessable for text-based approaches, e.g. prosody. To learn more, please check some of the papers.

textlesslib is a library aimed to facilitate research in Textless NLP. The goal of the library is to speed up the research cycle and lower the learning curve for those who want to start. We provide highly configurable, off-the-shelf available tools to encode speech as sequences of discrete values and tools to decode such streams back into the audio domain.

Table of Contents

Installation

git clone [email protected]:facebookresearch/textlesslib.git
cd textlesslib
pip install -e .
pip install git+git://github.com:pytorch/[email protected]

Usage examples

We include a set of examples in the examples folder:

There is also a [Jupyter notebook] and a [Google Colab] that combine discrete resynthesis and speech continuation examples in a step-by-step mini-tutorial.

We believe those examples can serve both as illustrations for the provided components and provide a starting point for tinkering in interesting directions.

Encoding speech

Below is an example on loading an audio example and encoding it as a sequence of HuBERT-based discrete tokens (aka pseudo-units). Downloading of the required checkpoints is handled by textlesslib itself (by default they are stored in ~/.textless):

import torchaudio
from textless.data.speech_encoder import SpeechEncoder

dense_model_name = "hubert-base-ls960"
quantizer_name, vocab_size = "kmeans", 100
input_file = "input.wav"

# now let's load an audio example
waveform, sample_rate = torchaudio.load(input_file)

# We can build a speech encoder module using names of pre-trained
# dense and quantizer models.  The call below will download
# appropriate checkpoints as needed behind the scenes. We can
# also construct an encoder by directly passing model instances
encoder = SpeechEncoder.by_name(
    dense_model_name=dense_model_name,
    quantizer_model_name=quantizer_name,
    vocab_size=vocab_size,
    deduplicate=True,
).cuda()


# now convert it in a stream of deduplicated units (as in GSLM)
encoded = encoder(waveform.cuda())
# encoded is a dict with keys ('dense', 'units', 'durations').
# It can also contain 'f0' if SpeechEncoder was initialized
# with need_f0=True flag.
units = encoded["units"]  # tensor([71, 12, 57, ...], ...)

Now it can be casted back into the audio domain:

# as with encoder, we can setup vocoder by passing checkpoints
# directly or by specifying the expected format by the names
# of dense and quantizer models (these models themselves
# won't be loaded)
vocoder = TacotronVocoder.by_name(
    dense_model_name,
    quantizer_name,
    vocab_size,
).cuda()

# now we turn those units back into the audio.
audio = vocoder(units)

# save the audio
torchaudio.save(output_file, audio.cpu().float().unsqueeze(0), vocoder.output_sample_rate)

Dataset helpers

Below is an example on using textless view on the LibriSpeech dataset:

encoder = SpeechEncoder.by_name(
  dense_model_name=dense_model_name,
  quantizer_model_name=quantizer_name,
  vocab_size=vocab_size,
  deduplicate=True,
).cuda()

quantized_dataset = QuantizedLibriSpeech(
  root=existing_root, speech_encoder=encoder, url=url)

datum = quantized_dataset[0]
sample_rate, utterance, speaker_id, chapter_id, utterance_id = datum['rest']
# datum['units'] = tensor([71, 12, 63, ...])

In the probing example we illustrate how such a dataset can be used with a standard Pytorch dataloader in a scalable manner.

Data preprocessing

We also provide a multi-GPU/multi-node preprocessing tool for the cases where on-the-fly processing of audio should be avoided.

Provided models

We provide implementations and pre-trained checkpoints for the following models:

  • Dense representations: HuBERT-base (trained on LibriSpeech 960h) and CPC (trained on 6Kh subset of LibriLight);
  • Quantizers: k-means quantizers with vocabulary sizes of 50, 100, 200 for both the dense models (trained on LibriSpeech 960h);
  • Decoders: Tacotron2 models for all (dense model x quantizer) combinations (trained on LJSpeech).

Finally, the pitch extraction is done via YAAPT.

Testing

We use pytest (pip install pytest pytest-xdist ). Our unit tests are located in the tests directory:

cd tests && pytest -n 8

Licence

textlesslib is licensed under MIT, the text of the license can be found here. Internally, it uses

Owner
Meta Research
Meta Research
Random-Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Random Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short links

Mohammed Rabil 1 Jan 01, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
Long text token classification using LongFormer

Long text token classification using LongFormer

abhishek thakur 161 Aug 07, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima

Brycen Westgarth 110 Jan 07, 2023
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
Code for paper "Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features"

Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features Train python main.py --dataset brazil-flights C

wang zhang 0 Jun 28, 2022
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
Summarization module based on KoBART

KoBART-summarization Install KoBART pip install git+https://github.com/SKT-AI/KoBART#egg=kobart Requirements pytorch==1.7.0 transformers==4.0.0 pytor

seujung hwan, Jung 148 Dec 28, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 04, 2023
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

Recognai 65 Sep 13, 2022
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Twitter COVID-19 Sentiment Analysis Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold Pro

4 Oct 15, 2022