The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Overview

Kernelized-HRM

Jiashuo Liu, Zheyuan Hu

The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the codes for our Classification with Spurious Correlation and Regression with Selection Bias simulated experiments, including the data generation process, the whole Kernelized-HRM algorithm and the testing process.

Details

There are two files, named KernelHRM_sim1.py and KernelHRM_sim2.py, which contains the code for the classification simulation experiment and the regression simulation experiment, respectively. The details of codes are:

  • generate_data_list: generate data according to the given parameters args.r_list.

  • generate_test_data_list: generate the test data for Selection Bias experiment, where the args.r_list is pre-defined to [-2.9,-2.7,...,-1.9].

  • main_KernelHRM: the whole framework for our Kernelized-HRM algorithm.

Hypermeters

There are many hyper-parameters to be tuned for the whole framework, which are different among different tasks and require users to carefully tune. Note that although we provide the hyper-parameters for the simulated experiments, it is possible that the results are not exactly the same as ours, which may due to the randomness or something else.

Generally, the following hyper-parameters need carefully tuned:

  • k: controls the dimension of reduced neural tangent features
  • whole_epoch: controls the overall number of iterations between the frontend and the backend
  • epochs: controls the number of epochs of optimizing the invariant learning module in each iteration
  • IRM_lam: controls the strength of the regularizer for the invariant learning
  • lr: learning rate
  • cluster_num: controls the number of clusters

Further, for the experimental settings, the following parameters need to be specified:

  • r_list: controls the strength of spurious correlations
  • scramble: similar to IRM[2], whether to mix the raw features
  • num_list: controls the number of data points from each environment

As for the optimal hyper-parameters for our simulation experiments, we put them into the reproduce.sh file.

Others

Similar to HRM[3], we view the proposed Kernelized-HRM as a framework, which converts the non-linear and complicated data into linear and raw feature data by neural tangent kernel and includes the clustering module and the invariant prediction module. In practice, one can replace each model to anything they want with the same effect.

Though I hate to mention it, our method has the following shortcomings:

  • Just like the original HRM[3], the convergence of the frontend module cannot be guaranteed, and we notice that there may be some cases the next iteration does not improve the current results or even hurts.
  • Hyper-parameters for different tasks may be quite different and need to be tuned carefully.
  • Whether this algorithm can be extended to more complicated image data, such as PACS, NICO et al. remains to be seen.(Maybe later we will have a try?)

Reference

[1] Jiasuho Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Kernelized Heterogeneous Risk Minimization. In NeurIPS 2021.

[2] Arjovsky M, Bottou L, Gulrajani I, et al. Invariant risk minimization.

[3] Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Heterogeneous Risk Minimziation. In ICML 2021.

Owner
Liu Jiashuo
THU-TrustAI(THU-TAI) Group
Liu Jiashuo
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022