Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Related tags

Deep LearningINVASE
Overview

Codebase for "INVASE: Instance-wise Variable Selection"

Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar

Paper: Jinsung Yoon, James Jordon, Mihaela van der Schaar, "IINVASE: Instance-wise Variable Selection using Neural Networks," International Conference on Learning Representations (ICLR), 2019. (https://openreview.net/forum?id=BJg_roAcK7)

This directory contains implementations of INVASE framework for the following applications.

  • Instance-wise feature selection
  • Prediction with instance-wise feature selection

To run the pipeline for training and evaluation on INVASE framwork, simply run python3 -m main_inavse.py.

Note that any model architecture can be used as the actor and critic models such as CNN. The condition for models is to have train and predict functions as its subfunctions.

Stages of the INVASE framework:

  • Generate synthetic dataset (6 synthetic datasets)
  • Train INVASE or INVASE- (without baseline)
  • Evaluate INVASE for instance-wise feature selection
  • Evaluate INVASE for prediction

Command inputs:

  • data_type: synthetic data type (syn1 to syn6)

  • train_no: the number of samples for training set

  • train_no: the number of samples for testing set

  • dim: the number of features

  • model_type: invase or invase_minus

  • model_parameters:

    • actor_h_dim: hidden state dimensions for actor
    • critic_h_dim: hidden state dimensions for critic
    • n_layer: the number of layers
    • batch_size: the number of samples in mini batch
    • iteration: the number of iterations
    • activation: activation function of models
    • learning_rate: learning rate of model training
    • lamda: hyper-parameter of INVASE

Example command

$ python3 main_invase.py 
--data_type syn1 --train_no 10000 --test_no 10000 --dim 11
--model_type invase --actor_h_dim 100 --critic_h_dim 200
--n_layer 3 --batch_size 1000 --iteration 10000
--activation relu --learning_rate 0.0001 --lamda 0.1

Outputs

  • Instance-wise feature selection performance:
    • Mean TPR
    • Std TPR
    • Mean FDR
    • Std FDR
  • Prediction performance:
    • AUC
    • APR
    • ACC
Owner
Jinsung Yoon
Research Scientist at Google Cloud AI
Jinsung Yoon
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022