A high performance implementation of HDBSCAN clustering. http://hdbscan.readthedocs.io/en/latest/

Overview
PyPI Version Conda-forge Version Conda-forge downloads License Travis Build Status Test Coverage Docs JOSS article

HDBSCAN

Now a part of scikit-learn-contrib

HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon. This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter selection.

In practice this means that HDBSCAN returns a good clustering straight away with little or no parameter tuning -- and the primary parameter, minimum cluster size, is intuitive and easy to select.

HDBSCAN is ideal for exploratory data analysis; it's a fast and robust algorithm that you can trust to return meaningful clusters (if there are any).

Based on the paper:
R. Campello, D. Moulavi, and J. Sander, Density-Based Clustering Based on Hierarchical Density Estimates In: Advances in Knowledge Discovery and Data Mining, Springer, pp 160-172. 2013

Documentation, including tutorials, are available on ReadTheDocs at http://hdbscan.readthedocs.io/en/latest/ .

Notebooks comparing HDBSCAN to other clustering algorithms, explaining how HDBSCAN works and comparing performance with other python clustering implementations are available.

How to use HDBSCAN

The hdbscan package inherits from sklearn classes, and thus drops in neatly next to other sklearn clusterers with an identical calling API. Similarly it supports input in a variety of formats: an array (or pandas dataframe, or sparse matrix) of shape (num_samples x num_features); an array (or sparse matrix) giving a distance matrix between samples.

import hdbscan
from sklearn.datasets import make_blobs

data, _ = make_blobs(1000)

clusterer = hdbscan.HDBSCAN(min_cluster_size=10)
cluster_labels = clusterer.fit_predict(data)

Performance

Significant effort has been put into making the hdbscan implementation as fast as possible. It is orders of magnitude faster than the reference implementation in Java, and is currently faster than highly optimized single linkage implementations in C and C++. version 0.7 performance can be seen in this notebook . In particular performance on low dimensional data is better than sklearn's DBSCAN , and via support for caching with joblib, re-clustering with different parameters can be almost free.

Additional functionality

The hdbscan package comes equipped with visualization tools to help you understand your clustering results. After fitting data the clusterer object has attributes for:

  • The condensed cluster hierarchy
  • The robust single linkage cluster hierarchy
  • The reachability distance minimal spanning tree

All of which come equipped with methods for plotting and converting to Pandas or NetworkX for further analysis. See the notebook on how HDBSCAN works for examples and further details.

The clusterer objects also have an attribute providing cluster membership strengths, resulting in optional soft clustering (and no further compute expense). Finally each cluster also receives a persistence score giving the stability of the cluster over the range of distance scales present in the data. This provides a measure of the relative strength of clusters.

Outlier Detection

The HDBSCAN clusterer objects also support the GLOSH outlier detection algorithm. After fitting the clusterer to data the outlier scores can be accessed via the outlier_scores_ attribute. The result is a vector of score values, one for each data point that was fit. Higher scores represent more outlier like objects. Selecting outliers via upper quantiles is often a good approach.

Based on the paper:
R.J.G.B. Campello, D. Moulavi, A. Zimek and J. Sander Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection, ACM Trans. on Knowledge Discovery from Data, Vol 10, 1 (July 2015), 1-51.

Robust single linkage

The hdbscan package also provides support for the robust single linkage clustering algorithm of Chaudhuri and Dasgupta. As with the HDBSCAN implementation this is a high performance version of the algorithm outperforming scipy's standard single linkage implementation. The robust single linkage hierarchy is available as an attribute of the robust single linkage clusterer, again with the ability to plot or export the hierarchy, and to extract flat clusterings at a given cut level and gamma value.

Example usage:

import hdbscan
from sklearn.datasets import make_blobs

data = make_blobs(1000)

clusterer = hdbscan.RobustSingleLinkage(cut=0.125, k=7)
cluster_labels = clusterer.fit_predict(data)
hierarchy = clusterer.cluster_hierarchy_
alt_labels = hierarchy.get_clusters(0.100, 5)
hierarchy.plot()
Based on the paper:
K. Chaudhuri and S. Dasgupta. "Rates of convergence for the cluster tree." In Advances in Neural Information Processing Systems, 2010.

Installing

Easiest install, if you have Anaconda (thanks to conda-forge which is awesome!):

conda install -c conda-forge hdbscan

PyPI install, presuming you have sklearn and all its requirements (numpy and scipy) installed:

pip install hdbscan

If pip is having difficulties pulling the dependencies then we'd suggest installing the dependencies manually using anaconda followed by pulling hdbscan from pip:

conda install cython
conda install numpy scipy
conda install scikit-learn
pip install hdbscan

For a manual install get this package:

wget https://github.com/scikit-learn-contrib/hdbscan/archive/master.zip
unzip master.zip
rm master.zip
cd hdbscan-master

Install the requirements

sudo pip install -r requirements.txt

or

conda install scikit-learn cython

Install the package

python setup.py install

Python Version

The hdbscan library supports both Python 2 and Python 3. However we recommend Python 3 as the better option if it is available to you.

Help and Support

For simple issues you can consult the FAQ in the documentation. If your issue is not suitably resolved there, please check the issues on github. Finally, if no solution is available there feel free to open an issue ; the authors will attempt to respond in a reasonably timely fashion.

Contributing

We welcome contributions in any form! Assistance with documentation, particularly expanding tutorials, is always welcome. To contribute please fork the project make your changes and submit a pull request. We will do our best to work through any issues with you and get your code merged into the main branch.

Citing

If you have used this codebase in a scientific publication and wish to cite it, please use the Journal of Open Source Software article.

L. McInnes, J. Healy, S. Astels, hdbscan: Hierarchical density based clustering In: Journal of Open Source Software, The Open Journal, volume 2, number 11. 2017

Licensing

The hdbscan package is 3-clause BSD licensed. Enjoy.

Owner
Leland McInnes
Leland McInnes
Sparkling Pandas

SparklingPandas SparklingPandas aims to make it easy to use the distributed computing power of PySpark to scale your data analysis with Pandas. Sparkl

366 Oct 27, 2022
Param: Make your Python code clearer and more reliable by declaring Parameters

Param Param is a library providing Parameters: Python attributes extended to have features such as type and range checking, dynamically generated valu

HoloViz 304 Jan 07, 2023
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

Leonardo Taccari 462 Jan 02, 2023
Learning Convolutional Neural Networks with Interactive Visualization.

CNN Explainer An interactive visualization system designed to help non-experts learn about Convolutional Neural Networks (CNNs) For more information,

Polo Club of Data Science 6.3k Jan 01, 2023
Debugging, monitoring and visualization for Python Machine Learning and Data Science

Welcome to TensorWatch TensorWatch is a debugging and visualization tool designed for data science, deep learning and reinforcement learning from Micr

Microsoft 3.3k Dec 27, 2022
A declarative (epi)genomics visualization library for Python

gos is a declarative (epi)genomics visualization library for Python. It is built on top of the Gosling JSON specification, providing a simplified interface for authoring interactive genomic visualiza

Gosling 107 Dec 14, 2022
3D Vision functions with end-to-end support for deep learning developers, written in Ivy.

Ivy vision focuses predominantly on 3D vision, with functions for camera geometry, image projections, co-ordinate frame transformations, forward warping, inverse warping, optical flow, depth triangul

Ivy 61 Dec 29, 2022
A D3.js plugin that produces flame graphs from hierarchical data.

d3-flame-graph A D3.js plugin that produces flame graphs from hierarchical data. If you don't know what flame graphs are, check Brendan Gregg's post.

Martin Spier 740 Dec 29, 2022
Generate a roam research like Network Graph view from your Notion pages.

Notion Graph View Export Notion pages to a Roam Research like graph view.

Steve Sun 214 Jan 07, 2023
Missing data visualization module for Python.

missingno Messy datasets? Missing values? missingno provides a small toolset of flexible and easy-to-use missing data visualizations and utilities tha

Aleksey Bilogur 3.4k Dec 29, 2022
Monochromatic colorscheme for matplotlib with opinionated sensible default

Monochromatic colorscheme for matplotlib with opinionated sensible default If you need a simple monochromatic colorscheme for your matplotlib figures,

Aria Ghora Prabono 2 May 06, 2022
A set of useful perceptually uniform colormaps for plotting scientific data

Colorcet: Collection of perceptually uniform colormaps Build Status Coverage Latest dev release Latest release Docs What is it? Colorcet is a collecti

HoloViz 590 Dec 31, 2022
Extensible, parallel implementations of t-SNE

openTSNE openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction al

Pavlin Poličar 1.1k Jan 03, 2023
A visualization tool made in Pygame for various pathfinding algorithms.

Pathfinding-Visualizer πŸš€ A visualization tool made in Pygame for various pathfinding algorithms. Pathfinding is closely related to the shortest path

Aysha sana 7 Jul 09, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 111 Jan 03, 2023
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
Turn a STAC catalog into a dask-based xarray

StackSTAC Turn a list of STAC items into a 4D xarray DataArray (dims: time, band, y, x), including reprojection to a common grid. The array is a lazy

Gabe Joseph 148 Dec 19, 2022
Parse Robinhood 1099 Tax Document from PDF into CSV

Robinhood 1099 Parser This project converts Robinhood Securities 1099 tax document from PDF to CSV file. This tool will be helpful for those who need

Keun Tae (Kevin) Park 52 Jun 10, 2022
Typical: Fast, simple, & correct data-validation using Python 3 typing.

typical: Python's Typing Toolkit Introduction Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types

Sean 171 Jan 02, 2023
πŸ“ŠπŸ“ˆ Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

πŸ“ŠπŸ“ˆ Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

wq framework 1.2k Jan 01, 2023