demir.ai Dataset Operations

Overview

demir.ai Dataset Operations

With this application, you can have the empty values (nan/null) deleted or filled before giving your dataset to machine learning algorithms, you can access visual or numerical information about your dataset and have more detailed information about your attributes.

The application is written in Python programming language, Flask framework is used in the backend, Html is used in the frontent. Pandas framework is used to navigate over the dataset, all numerical operations on the dataset were written by me and no ready-made functions were used, while the plots were created from scratch by me using the Opencv framework.

Before running the application, you can install the necessary packages for the application with the following command.

pip3 install -r requirements.txt

You can launch the web application with the following command, and then you can use the application by going to http://localhost:5000/.

python3 main.py

With this web application, you can delete rows or columns with empty values (nan/null) on your dataset or fill these empty values in three different ways.

  • Null value (nan) operations you can do on your dataset with demir.ai Dataset Operations:

    • Column-based deletion of null data (nan/null)
    • Row-based deletion of null data (nan/null)
    • Filling in blank data by mean, median and mode

Again, thanks to this web application, you can reach visual or numerical results about your dataset and have detailed information about your dataset.

  • Information you can learn about your dataset with demir.ai Dataset Operations:

    • Mean of columns
    • Median of columns
    • Mode of columns
    • Frequency of columns
    • Interquartile range value (IQR) of columns
    • Outliers of columns
    • Five number summary of columns
    • Box Chart of columns
    • Variance and standard deviation of columns

Null value (nan/null) operations

  • Column-based deletion of null data (nan/null): The number of nulls is calculated for each column, then the percentage of nulls is calculated and if this percentage is greater than the percentage the user enters, this column is deleted.

  • Row-based deletion of null data (nan/null): The number of nulls is calculated for each line, and if this number of nulls is greater than the number entered by the user, this line is deleted.

  • Filling in blank data by mean, median and mode:

    • Mean: The sum of the non-blank values of the columns is taken and divided by the total number of non-blank values, the average obtained is written instead of the empty values.

    • Median: The median is calculated according to the non-blank values in the columns, and then this median value is written instead of the empty columns.

    • Mode: The mode is calculated according to the non-blank values in the columns, and then this mode value is written instead of the empty columns

Information you can learn about your dataset

  • Mean of columns: The mean is calculated for each column separately and the column mean information is presented to the user.

  • Median of columns: The median is calculated for each column separately and the column median information is presented to the user.

  • Mode of columns: The mode is calculated for each column separately and the column mode information is presented to the user.

  • Frequency of columns: Frequency is calculated for each column and the frequency information of the columns is presented to the user. In this section, frequency visualization is also done by creating a bar plot from scratch with Opencv.

  • Interquartile range value (IQR) of columns: Q1 and Q3 values are found for each column, then the IQR value of the columns is found with Q3-Q1 and presented to the user.

  • Outliers of columns: If the data in the column is less than (Q1-IQR * 1.5) and greater than (Q3+IQR * 1.5), it is called outlier and this information is presented to the user.

  • Five number summary of columns: Minimum, Q1, median, Q3 and Maximum values are calculated and presented to the user.

  • Box Chart of columns: After finding the minimum, Q1, median, Q3 and maximum values for each column, a box chart is created from scratch with Opencv and this chart is presented to the user.

  • Variance and standard deviation of columns: The variance and standard deviation for each column are calculated and presented to the user.

Application video

demirai.mp4
Owner
Ahmet Furkan DEMIR
Hi, my name is Ahmet Furkan DEMIR. I study computer engineering at Necmettin Erbakan University.
Ahmet Furkan DEMIR
Plotting data from the landroid and a raspberry pi zero to a influx-db

landroid-pi-influx Plotting data from the landroid and a raspberry pi zero to a influx-db Dependancies Hardware: Landroid WR130E Raspberry Pi Zero Wif

2 Oct 22, 2021
A set of useful perceptually uniform colormaps for plotting scientific data

Colorcet: Collection of perceptually uniform colormaps Build Status Coverage Latest dev release Latest release Docs What is it? Colorcet is a collecti

HoloViz 590 Dec 31, 2022
The repository is my code for various types of data visualization cases based on the Matplotlib library.

ScienceGallery The repository is my code for various types of data visualization cases based on the Matplotlib library. It summarizes the code and cas

Warrick Xu 2 Apr 20, 2022
Package managers visualization

Software Galaxies This repository combines visualizations of major software package managers. All visualizations are available here: http://anvaka.git

Andrei Kashcha 1.4k Dec 22, 2022
An interactive dashboard for visualisation, integration and classification of data using Active Learning.

AstronomicAL An interactive dashboard for visualisation, integration and classification of data using Active Learning. AstronomicAL is a human-in-the-

45 Nov 28, 2022
Numerical methods for ordinary differential equations: Euler, Improved Euler, Runge-Kutta.

Numerical methods Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary

Aleksey Korshuk 5 Apr 29, 2022
Simple addon for snapping active object to mesh ground

Snap to Ground Simple addon for snapping active object to mesh ground How to install: install the Python file as an addon use shortcut "D" in 3D view

Iyad Ahmed 12 Nov 07, 2022
Plotting library for IPython/Jupyter notebooks

bqplot 2-D plotting library for Project Jupyter Introduction bqplot is a 2-D visualization system for Jupyter, based on the constructs of the Grammar

3.4k Dec 30, 2022
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

HoloViz 697 Jan 06, 2023
Data visualization using matplotlib

Data visualization using matplotlib project instructions Top 5 Most Common Coffee Origins In this visualization I used data from Ankur Chavda on Kaggl

13 Oct 27, 2021
Parse Robinhood 1099 Tax Document from PDF into CSV

Robinhood 1099 Parser This project converts Robinhood Securities 1099 tax document from PDF to CSV file. This tool will be helpful for those who need

Keun Tae (Kevin) Park 52 Jun 10, 2022
Regress.me is an easy to use data visualization tool powered by Dash/Plotly.

Regress.me Regress.me is an easy to use data visualization tool powered by Dash/Plotly. Regress.me.-.Google.Chrome.2022-05-10.15-58-59.mp4 Get Started

Amar 14 Aug 14, 2022
Streaming pivot visualization via WebAssembly

Perspective is an interactive visualization component for large, real-time datasets. Originally developed for J.P. Morgan's trading business, Perspect

The Fintech Open Source Foundation (www.finos.org) 5.1k Dec 27, 2022
Schema validation for Xarray objects

xarray-schema Schema validation for Xarray installation This package is in the early stages of development. Install it from source: pip install git+gi

carbonplan 22 Oct 31, 2022
This is a small repository for me to implement my simply Data Visualisation skills through Python.

Data Visualisations This is a small repository for me to implement my simply Data Visualisation skills through Python. Steam Population Chart from 10/

9 Dec 31, 2021
Leyna's Visualizing Data With Python

Leyna's Visualizing Data Below is information on the number of bilingual students in three school districts in Massachusetts. You will also find infor

11 Oct 28, 2021
🗾 Streamlit Component for rendering kepler.gl maps

streamlit-keplergl 🗾 Streamlit Component for rendering kepler.gl maps in a streamlit app. 🎈 Live Demo 🎈 Installation pip install streamlit-keplergl

Christoph Rieke 39 Dec 14, 2022
A shimmer pre-load component for Plotly Dash

dash-loading-shimmer A shimmer pre-load component for Plotly Dash Installation Get it with pip: pip install dash-loading-extras Or maybe you prefer Pi

Lucas Durand 4 Oct 12, 2022
Lightweight, extensible data validation library for Python

Cerberus Cerberus is a lightweight and extensible data validation library for Python. v = Validator({'name': {'type': 'string'}}) v.validate({

eve 2.9k Dec 27, 2022
Sci palettes for matplotlib/seaborn

sci palettes for matplotlib/seaborn Installation python3 -m pip install sci-palettes Usage import seaborn as sns import matplotlib.pyplot as plt impor

Qingdong Su 2 Jun 07, 2022