LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

Related tags

Deep LearningLF-YOLO
Overview

This project is based on ultralytics/yolov3.

LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is available here.

Download

$ git clone https://github.com/lmomoy/LF-YOLO

Train

We provide multiple versions of LF-YOLO with different widths.

$ python train.py --data coco.yaml --cfg LF-YOLO.yaml      --weights '' --batch-size 1
                                         LF-YOLO-1.25.yaml                           1
                                         LF-YOLO-0.75.yaml                           1
                                         LF-YOLO-0.5.yaml                            1

Results

We test LF-YOLO on our weld defect image dataset. Other methods are trained and tested based on MMDetection.

Model size (pixels) mAP50test
params (M) FLOPS (B)
Cascasde-RCNN (ResNet50) (1333, 800) 90.0 68.9 243.2
Cascasde-RCNN (ResNet101) (1333, 800) 90.7 87.9 323.1
Faster-RCNN (ResNet50) (1333, 800) 90.1 41.1 215.4
Faster-RCNN (ResNet101) (1333, 800) 92.2 60.1 295.3
Dynamic-RCNN (ResNet50) (1333, 800) 90.3 41.1 215.4
RetinaNet (ResNet50) (1333, 800) 80.0 36.2 205.2
VFNet (ResNet50) (1333, 800) 87.0 32.5 197.8
VFNet (ResNet101) (1333, 800) 87.2 51.5 277.7
Reppoints (ResNet101) (1333, 800) 82.7 36.6 199.0
SSD300 (VGGNet) 300 88.1 24.0 30.6
YOLOv3 (Darknet52) 416 91.0 62.0 33.1
SSD (MobileNet v2) 300 82.3 3.1 0.7
YOLOv3 (MobileNet v2) 416 90.2 3.7 1.6
LF-YOLO-0.5 640 90.7 1.8 1.1
LF-YOLO 640 92.9 7.4 17.1

We test our model on public dataset MS COCO, and it also achieves competitive results.

Model size (pixels) mAP50test
params (M) FLOPS (B)
YOLOv3-tiny 640 34.8 8.8 13.2
YOLOv3 320 51.5 39.0 61.9
SSD 300 41.2 35.2 34.3
SSD 512 46.5 99.5 34.3
Faster R-CNN (VGG16) shorter size: 800 43.9 - 278.0
R-FCN (ResNet50) shorter size: 800 49.0 - 133.0
R-FCN (ResNet101) shorter size: 800 52.9 - 206.0
LF-YOLO 640 47.8 7.4 17.1

Requirements

Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:

$ pip install -r requirements.txt

Inference

$ python detect.py --source data/images --weights LF-YOLO.pt --conf 0.25
Syed Waqas Zamir 906 Dec 30, 2022
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022