LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

Related tags

Deep LearningLF-YOLO
Overview

This project is based on ultralytics/yolov3.

LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is available here.

Download

$ git clone https://github.com/lmomoy/LF-YOLO

Train

We provide multiple versions of LF-YOLO with different widths.

$ python train.py --data coco.yaml --cfg LF-YOLO.yaml      --weights '' --batch-size 1
                                         LF-YOLO-1.25.yaml                           1
                                         LF-YOLO-0.75.yaml                           1
                                         LF-YOLO-0.5.yaml                            1

Results

We test LF-YOLO on our weld defect image dataset. Other methods are trained and tested based on MMDetection.

Model size (pixels) mAP50test
params (M) FLOPS (B)
Cascasde-RCNN (ResNet50) (1333, 800) 90.0 68.9 243.2
Cascasde-RCNN (ResNet101) (1333, 800) 90.7 87.9 323.1
Faster-RCNN (ResNet50) (1333, 800) 90.1 41.1 215.4
Faster-RCNN (ResNet101) (1333, 800) 92.2 60.1 295.3
Dynamic-RCNN (ResNet50) (1333, 800) 90.3 41.1 215.4
RetinaNet (ResNet50) (1333, 800) 80.0 36.2 205.2
VFNet (ResNet50) (1333, 800) 87.0 32.5 197.8
VFNet (ResNet101) (1333, 800) 87.2 51.5 277.7
Reppoints (ResNet101) (1333, 800) 82.7 36.6 199.0
SSD300 (VGGNet) 300 88.1 24.0 30.6
YOLOv3 (Darknet52) 416 91.0 62.0 33.1
SSD (MobileNet v2) 300 82.3 3.1 0.7
YOLOv3 (MobileNet v2) 416 90.2 3.7 1.6
LF-YOLO-0.5 640 90.7 1.8 1.1
LF-YOLO 640 92.9 7.4 17.1

We test our model on public dataset MS COCO, and it also achieves competitive results.

Model size (pixels) mAP50test
params (M) FLOPS (B)
YOLOv3-tiny 640 34.8 8.8 13.2
YOLOv3 320 51.5 39.0 61.9
SSD 300 41.2 35.2 34.3
SSD 512 46.5 99.5 34.3
Faster R-CNN (VGG16) shorter size: 800 43.9 - 278.0
R-FCN (ResNet50) shorter size: 800 49.0 - 133.0
R-FCN (ResNet101) shorter size: 800 52.9 - 206.0
LF-YOLO 640 47.8 7.4 17.1

Requirements

Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:

$ pip install -r requirements.txt

Inference

$ python detect.py --source data/images --weights LF-YOLO.pt --conf 0.25
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022