aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Overview

Bayesian Methods for Hackers

Using Python and PyMC

The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chapters of slow, mathematical analysis. The typical text on Bayesian inference involves two to three chapters on probability theory, then enters what Bayesian inference is. Unfortunately, due to mathematical intractability of most Bayesian models, the reader is only shown simple, artificial examples. This can leave the user with a so-what feeling about Bayesian inference. In fact, this was the author's own prior opinion.

After some recent success of Bayesian methods in machine-learning competitions, I decided to investigate the subject again. Even with my mathematical background, it took me three straight-days of reading examples and trying to put the pieces together to understand the methods. There was simply not enough literature bridging theory to practice. The problem with my misunderstanding was the disconnect between Bayesian mathematics and probabilistic programming. That being said, I suffered then so the reader would not have to now. This book attempts to bridge the gap.

If Bayesian inference is the destination, then mathematical analysis is a particular path towards it. On the other hand, computing power is cheap enough that we can afford to take an alternate route via probabilistic programming. The latter path is much more useful, as it denies the necessity of mathematical intervention at each step, that is, we remove often-intractable mathematical analysis as a prerequisite to Bayesian inference. Simply put, this latter computational path proceeds via small intermediate jumps from beginning to end, where as the first path proceeds by enormous leaps, often landing far away from our target. Furthermore, without a strong mathematical background, the analysis required by the first path cannot even take place.

Bayesian Methods for Hackers is designed as an introduction to Bayesian inference from a computational/understanding-first, and mathematics-second, point of view. Of course as an introductory book, we can only leave it at that: an introductory book. For the mathematically trained, they may cure the curiosity this text generates with other texts designed with mathematical analysis in mind. For the enthusiast with less mathematical background, or one who is not interested in the mathematics but simply the practice of Bayesian methods, this text should be sufficient and entertaining.

The choice of PyMC as the probabilistic programming language is two-fold. As of this writing, there is currently no central resource for examples and explanations in the PyMC universe. The official documentation assumes prior knowledge of Bayesian inference and probabilistic programming. We hope this book encourages users at every level to look at PyMC. Secondly, with recent core developments and popularity of the scientific stack in Python, PyMC is likely to become a core component soon enough.

PyMC does have dependencies to run, namely NumPy and (optionally) SciPy. To not limit the user, the examples in this book will rely only on PyMC, NumPy, SciPy and Matplotlib.

Printed Version by Addison-Wesley

Bayesian Methods for Hackers is now available as a printed book! You can pick up a copy on Amazon. What are the differences between the online version and the printed version?

  • Additional Chapter on Bayesian A/B testing
  • Updated examples
  • Answers to the end of chapter questions
  • Additional explanation, and rewritten sections to aid the reader.

Contents

See the project homepage here for examples, too.

The below chapters are rendered via the nbviewer at nbviewer.jupyter.org/, and is read-only and rendered in real-time. Interactive notebooks + examples can be downloaded by cloning!

PyMC2

  • Prologue: Why we do it.

  • Chapter 1: Introduction to Bayesian Methods Introduction to the philosophy and practice of Bayesian methods and answering the question, "What is probabilistic programming?" Examples include:

    • Inferring human behaviour changes from text message rates
  • Chapter 2: A little more on PyMC We explore modeling Bayesian problems using Python's PyMC library through examples. How do we create Bayesian models? Examples include:

    • Detecting the frequency of cheating students, while avoiding liars
    • Calculating probabilities of the Challenger space-shuttle disaster
  • Chapter 3: Opening the Black Box of MCMC We discuss how MCMC operates and diagnostic tools. Examples include:

    • Bayesian clustering with mixture models
  • Chapter 4: The Greatest Theorem Never Told We explore an incredibly useful, and dangerous, theorem: The Law of Large Numbers. Examples include:

    • Exploring a Kaggle dataset and the pitfalls of naive analysis
    • How to sort Reddit comments from best to worst (not as easy as you think)
  • Chapter 5: Would you rather lose an arm or a leg? The introduction of loss functions and their (awesome) use in Bayesian methods. Examples include:

    • Solving the Price is Right's Showdown
    • Optimizing financial predictions
    • Winning solution to the Kaggle Dark World's competition
  • Chapter 6: Getting our prior-ities straight Probably the most important chapter. We draw on expert opinions to answer questions. Examples include:

    • Multi-Armed Bandits and the Bayesian Bandit solution.
    • What is the relationship between data sample size and prior?
    • Estimating financial unknowns using expert priors

    We explore useful tips to be objective in analysis as well as common pitfalls of priors.

PyMC3

  • Prologue: Why we do it.

  • Chapter 1: Introduction to Bayesian Methods Introduction to the philosophy and practice of Bayesian methods and answering the question, "What is probabilistic programming?" Examples include:

    • Inferring human behaviour changes from text message rates
  • Chapter 2: A little more on PyMC We explore modeling Bayesian problems using Python's PyMC library through examples. How do we create Bayesian models? Examples include:

    • Detecting the frequency of cheating students, while avoiding liars
    • Calculating probabilities of the Challenger space-shuttle disaster
  • Chapter 3: Opening the Black Box of MCMC We discuss how MCMC operates and diagnostic tools. Examples include:

    • Bayesian clustering with mixture models
  • Chapter 4: The Greatest Theorem Never Told We explore an incredibly useful, and dangerous, theorem: The Law of Large Numbers. Examples include:

    • Exploring a Kaggle dataset and the pitfalls of naive analysis
    • How to sort Reddit comments from best to worst (not as easy as you think)
  • Chapter 5: Would you rather lose an arm or a leg? The introduction of loss functions and their (awesome) use in Bayesian methods. Examples include:

    • Solving the Price is Right's Showdown
    • Optimizing financial predictions
    • Winning solution to the Kaggle Dark World's competition
  • Chapter 6: Getting our prior-ities straight Probably the most important chapter. We draw on expert opinions to answer questions. Examples include:

    • Multi-Armed Bandits and the Bayesian Bandit solution.
    • What is the relationship between data sample size and prior?
    • Estimating financial unknowns using expert priors

    We explore useful tips to be objective in analysis as well as common pitfalls of priors.

More questions about PyMC? Please post your modeling, convergence, or any other PyMC question on cross-validated, the statistics stack-exchange.

Using the book

The book can be read in three different ways, starting from most recommended to least recommended:

  1. The most recommended option is to clone the repository to download the .ipynb files to your local machine. If you have Jupyter installed, you can view the chapters in your browser plus edit and run the code provided (and try some practice questions). This is the preferred option to read this book, though it comes with some dependencies.

    • Jupyter is a requirement to view the ipynb files. It can be downloaded here. Jupyter notebooks can be run by (your-virtualenv) ~/path/to/the/book/Chapter1_Introduction $ jupyter notebook
    • For Linux users, you should not have a problem installing NumPy, SciPy, Matplotlib and PyMC. For Windows users, check out pre-compiled versions if you have difficulty.
    • In the styles/ directory are a number of files (.matplotlirc) that used to make things pretty. These are not only designed for the book, but they offer many improvements over the default settings of matplotlib.
  2. The second, preferred, option is to use the nbviewer.jupyter.org site, which display Jupyter notebooks in the browser (example). The contents are updated synchronously as commits are made to the book. You can use the Contents section above to link to the chapters.

  3. PDFs are the least-preferred method to read the book, as PDFs are static and non-interactive. If PDFs are desired, they can be created dynamically using the nbconvert utility.

Installation and configuration

If you would like to run the Jupyter notebooks locally, (option 1. above), you'll need to install the following:

  • Jupyter is a requirement to view the ipynb files. It can be downloaded here

  • Necessary packages are PyMC, NumPy, SciPy and Matplotlib.

  • New to Python or Jupyter, and help with the namespaces? Check out this answer.

  • In the styles/ directory are a number of files that are customized for the notebook. These are not only designed for the book, but they offer many improvements over the default settings of matplotlib and the Jupyter notebook. The in notebook style has not been finalized yet.

Development

This book has an unusual development design. The content is open-sourced, meaning anyone can be an author. Authors submit content or revisions using the GitHub interface.

How to contribute

What to contribute?

  • The current chapter list is not finalized. If you see something that is missing (MCMC, MAP, Bayesian networks, good prior choices, Potential classes etc.), feel free to start there.
  • Cleaning up Python code and making code more PyMC-esque
  • Giving better explanations
  • Spelling/grammar mistakes
  • Suggestions
  • Contributing to the Jupyter notebook styles

Commiting

  • All commits are welcome, even if they are minor ;)
  • If you are unfamiliar with Github, you can email me contributions to the email below.

Reviews

these are satirical, but real

"No, but it looks good" - John D. Cook

"I ... read this book ... I like it!" - Andrew Gelman

"This book is a godsend, and a direct refutation to that 'hmph! you don't know maths, piss off!' school of thought... The publishing model is so unusual. Not only is it open source but it relies on pull requests from anyone in order to progress the book. This is ingenious and heartening" - excited Reddit user

Contributions and Thanks

Thanks to all our contributing authors, including (in chronological order):

Authors
Cameron Davidson-Pilon Stef Gibson Vincent Ohprecio Lars Buitinck
Paul Magwene Matthias Bussonnier Jens Rantil y-p
Ethan Brown Jonathan Whitmore Mattia Rigotti Colby Lemon
Gustav W Delius Matthew Conlen Jim Radford Vannessa Sabino
Thomas Bratt Nisan Haramati Robert Grant Matthew Wampler-Doty
Yaroslav Halchenko Alex Garel Oleksandr Lysenko liori
ducky427 Pablo de Oliveira Castro sergeyfogelson Mattia Rigotti
Matt Bauman Andrew Duberstein Carsten Brandt Bob Jansen
ugurthemaster William Scott Min RK Bulwersator
elpres Augusto Hack Michael Feldmann Youki
Jens Rantil Kyle Meyer Eric Martin Inconditus
Kleptine Stuart Layton Antonino Ingargiola vsl9
Tom Christie bclow Simon Potter Garth Snyder
Daniel Beauchamp Philipp Singer gbenmartin Peadar Coyle

We would like to thank the Python community for building an amazing architecture. We would like to thank the statistics community for building an amazing architecture.

Similarly, the book is only possible because of the PyMC library. A big thanks to the core devs of PyMC: Chris Fonnesbeck, Anand Patil, David Huard and John Salvatier.

One final thanks. This book was generated by Jupyter Notebook, a wonderful tool for developing in Python. We thank the IPython/Jupyter community for developing the Notebook interface. All Jupyter notebook files are available for download on the GitHub repository.

Contact

Contact the main author, Cam Davidson-Pilon at [email protected] or @cmrndp

Imgur

Owner
Cameron Davidson-Pilon
Focusing on sustainable food. Former Director of Data Science @Shopify. Author of Bayesian Methods for Hackers and DataOrigami.
Cameron Davidson-Pilon
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

EDSR modelling A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repositor

Samuel Jackson 7 Nov 03, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
A collection of models for image<->text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022