Get Landsat surface reflectance time-series from google earth engine

Overview

geextract

Google Earth Engine data extraction tool. Quickly obtain Landsat multispectral time-series for exploratory analysis and algorithm testing

Online documentation available at https://loicdtx.github.io/landsat-extract-gee

https://coveralls.io/repos/github/loicdtx/landsat-extract-gee/badge.svg?branch=master https://travis-ci.org/loicdtx/landsat-extract-gee.svg?branch=master

Introduction

A python library (API + command lines) to extract Landsat time-series from the Google Earth Engine platform. Can query single pixels or spatially aggregated values over polygons. When used via the command line, extracted time-series are written to a sqlite database.

The idea is to provide quick access to Landsat time-series for exploratory analysis or algorithm testing. Instead of downloading the whole stack of Landsat scenes, preparing the data locally and extracting the time-series of interest, which may take several days, geextract allows to get time-series in a few seconds.

Compatible with python 2.7 and 3.

Usage

API

The principal function of the API is ts_extract

from geextract import ts_extract
from datetime import datetime

# Extract a Landsat 7 time-series for a 500m radius circular buffer around
# a location in Yucatan
lon = -89.8107197
lat = 20.4159611
LE7_dict_list = ts_extract(lon=lon, lat=lat, sensor='LE7',
                           start=datetime(1999, 1, 1), radius=500)

Command line

geextract comes with two command lines, for extracting Landsat time-series directly from the command line.

  • gee_extract.py: Extract a Landsat multispectral time-series for a single site. Extracted data are automatically added to a sqlite database.
  • gee_extract_batch.py: Batch order Landsat multispectral time-series for multiple locations.
gee_extract.py --help

# Extract all the LT5 bands for a location in Yucatan for the entire Landsat period, with a 500m radius
gee_extract.py -s LT5 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1
gee_extract.py -s LE7 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1
gee_extract.py -s LC8 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1
gee_extract_batch.py --help

# Extract all the LC8 bands in a 500 meters for two locations between 2012 and now
echo "4.7174,44.7814,rompon\n-149.4260,-17.6509,tahiti" > site_list.txt
gee_extract_batch.py site_list.txt -b 1984-01-01 -s LT5 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts
gee_extract_batch.py site_list.txt -b 1984-01-01 -s LE7 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts
gee_extract_batch.py site_list.txt -b 1984-01-01 -s LC8 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts

https://github.com/loicdtx/landsat-extract-gee/raw/master/docs/figs/multispectral_uxmal.png

Installation

You must have a Google Earth Engine account to use the package.

Then, in a vitual environment run:

pip install geextract
earthengine authenticate

This will open a google authentication page in your browser, and will give you an authentication token to paste back in the terminal.

You can check that the authentication process was successful by running.

python -c "import ee; ee.Initialize()"

If nothing happens... it's working.

Benchmark

A quick benchmark of the extraction speed, using a 500 m buffer.

import time
from datetime import datetime
from pprint import pprint
import geextract

lon = -89.8107197
lat = 20.4159611

for sensor in ['LT5', 'LE7', 'LT4', 'LC8']:
    start = time.time()
    out = geextract.ts_extract(lon=lon, lat=lat, sensor=sensor, start=datetime(1980, 1, 1, 0, 0),
                               end=datetime.today(), radius=500)
    end = time.time()

    pprint('%s. Extracted %d records in %.1f seconds' % (sensor, len(out), end - start))
# 'LT5. Extracted 142 records in 1.9 seconds'
# 'LE7. Extracted 249 records in 5.8 seconds'
# 'LT4. Extracted 7 records in 1.0 seconds'
# 'LC8. Extracted 72 records in 2.4 seconds'
Owner
Loïc Dutrieux
I'm a Geo-Spatial specialist with a PhD in satellite remote sensing. Data lover, tool builder and problem solver.
Loïc Dutrieux
When traveling in the backcountry during winter time, updating yourself on current and recent weather data is important to understand likely avalanche danger.

Weather Data When traveling in the backcountry during winter time, updating yourself on current and recent weather data is important to understand lik

Trevor Allen 0 Jan 02, 2022
Interactive Maps with Geopandas

Create Interactive maps 🗺️ with your geodataframe Geopatra extends geopandas for interactive mapping and attempts to wrap the goodness of amazing map

sangarshanan 46 Aug 16, 2022
gpdvega is a bridge between GeoPandas and Altair that allows to seamlessly chart geospatial data

gpdvega gpdvega is a bridge between GeoPandas a geospatial extension of Pandas and the declarative statistical visualization library Altair, which all

Ilia Timofeev 49 Jul 25, 2022
Read images to numpy arrays

mahotas-imread: Read Image Files IO with images and numpy arrays. Mahotas-imread is a simple module with a small number of functions: imread Reads an

Luis Pedro Coelho 67 Jan 07, 2023
Expose a GDAL file as a HTTP accessible on-the-fly COG

cogserver Expose any GDAL recognized raster file as a HTTP accessible on-the-fly COG (Cloud Optimized GeoTIFF) The on-the-fly COG file is not material

Even Rouault 73 Aug 04, 2022
Code and coordinates for Matt's 2021 xmas tree

xmastree2021 Code and coordinates for Matt's 2021 xmas tree This repository contains the code and coordinates used for Matt's 2021 Christmas tree, as

Stand-up Maths 117 Jan 01, 2023
pure-Python (Numpy optional) 3D coordinate conversions for geospace ecef enu eci

Python 3-D coordinate conversions Pure Python (no prerequistes beyond Python itself) 3-D geographic coordinate conversions and geodesy. API similar to

Geospace code 292 Dec 29, 2022
A Django application that provides country choices for use with forms, flag icons static files, and a country field for models.

Django Countries A Django application that provides country choices for use with forms, flag icons static files, and a country field for models. Insta

Chris Beaven 1.2k Jan 03, 2023
Implemented a Google Maps prototype that provides the shortest route in terms of distance

Implemented a Google Maps prototype that provides the shortest route in terms of distance, the fastest route, the route with the fewest turns, and a scenic route that avoids roads when provided a sou

1 Dec 26, 2021
Extract GoPro highlights and GPMF data.

Python script that parses the gpmd stream for GOPRO moov track (MP4) and extract the GPS info into a GPX (and kml) file.

Chris Auron 2 May 13, 2022
r.cfdtools 7 Dec 28, 2022
Download and process satellite imagery in Python using Sentinel Hub services.

Description The sentinelhub Python package allows users to make OGC (WMS and WCS) web requests to download and process satellite images within your Py

Sentinel Hub 659 Dec 23, 2022
LEOGPS - Satellite Navigation with GPS on Python!

LEOGPS is an open-source Python software which performs relative satellite navigation between two formation flying satellites, with the objective of high accuracy relative positioning. Specifically,

Samuel Low 50 Dec 13, 2022
Mmdb-server - An open source fast API server to lookup IP addresses for their geographic location

mmdb-server mmdb-server is an open source fast API server to lookup IP addresses

Alexandre Dulaunoy 67 Nov 25, 2022
Minimum Bounding Box of Geospatial data

BBOX Problem definition: The spatial data users often are required to obtain the coordinates of the minimum bounding box of vector and raster data in

Ali Khosravi Kazazi 1 Sep 08, 2022
Python bindings and utilities for GeoJSON

geojson This Python library contains: Functions for encoding and decoding GeoJSON formatted data Classes for all GeoJSON Objects An implementation of

Jazzband 765 Jan 06, 2023
Pandas Network Analysis: fast accessibility metrics and shortest paths, using contraction hierarchies :world_map:

Pandana Pandana is a Python library for network analysis that uses contraction hierarchies to calculate super-fast travel accessibility metrics and sh

Urban Data Science Toolkit 321 Jan 05, 2023
A ninja python package that unifies the Google Earth Engine ecosystem.

A Python package that unifies the Google Earth Engine ecosystem. EarthEngine.jl | rgee | rgee+ | eemont GitHub: https://github.com/r-earthengine/ee_ex

47 Dec 27, 2022
Yet Another Time Series Model

Yet Another Timeseries Model (YATSM) master v0.6.x-maintenance Build Coverage Docs DOI | About Yet Another Timeseries Model (YATSM) is a Python packag

Chris Holden 60 Sep 13, 2022
Spectral decomposition for characterizing long-range interaction profiles in Hi-C maps

Inspectral Spectral decomposition for characterizing long-range interaction prof

Nezar Abdennur 6 Dec 13, 2022