Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Overview

pipeline status codecov codestyle

Pearl

The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid prototyping of new adaptive decision making algorithms in the intersection between reinforcement learning (RL) and evolutionary computation (EC). As such, this is not intended to provide template pre-built algorithms as a baseline, but rather flexible tools to allow the user to quickly build and test their own implementations and ideas. A technical report can be found here.

Main Features

Features Pearl
RL algorithms (e.g. Actor Critic) ✔️
EC algorithms (e.g. Genetic Algorithm) ✔️
Hybrid algorithms (e.g. CEM-DDPG) ✔️
Multi-agent suppport ✔️
Tensorboard integration ✔️
Modular and extensible components ✔️
Opinionated module settings ✔️
Custom callbacks ✔️

User Guide

Installation

There are two options to install this package:

  1. pip install pearll
  2. git clone [email protected]:LondonNode/Pearl.git

Module Guide

  • agents: implementations of RL and EC agents where the other modular components are put together
  • buffers: these handle storing and sampling of trajectories
  • callbacks: inject logic for every step made in an environment (e.g. save model, early stopping)
  • common: common methods applicable to all other modules (e.g. enumerations) and a main utils.py file with some useful general logic
  • explorers: action explorers for enhanced exploration by adding noise to actions and random exploration for first n steps
  • models: neural network structures which are structured as encoder -> torso -> head
  • signal_processing: signal processing logic for extra modularity (e.g. TD returns, GAE)
  • updaters: update neural networks and adaptive/iterative algorithms
  • settings.py: settings objects for the above components, can be extended for custom components

Agent Templates

See pearll/agents/templates.py for the templates to create your own agents! For more examples, see specific agent implementations under pearll/agents.

Agent Performance

To see training performance, use the command tensorboard --logdir runs or tensorboard --logdir <tensorboard_log_path> defined in your algorithm class initialization.

Python Scripts

To run these you'll need to go to wherever the library is installed, cd pearll.

  • demo.py: script to run very basic demos of agents with pre-defined hyperparameters, run python3 -m pearll.demo -h for more info
  • plot.py: script to plot more complex plots that can't be obtained via Tensorboard (e.g. multiple subplots), run python3 -m pearll.plot -h for more info

Developer Guide

Scripts

Linux

  1. scripts/setup_dev.sh: setup your virtual environment
  2. scripts/run_tests.sh: run tests

Windows

  1. scripts/windows_setup_dev.bat: setup your virtual environment
  2. scripts/windows_run_tests.bat: run tests

Dependency Management

Pearl uses poetry for dependency management and build release instead of pip. As a quick guide:

  1. Run poetry add [package] to add more package dependencies.
  2. Poetry automatically handles the virtual environment used, check pyproject.toml for specifics on the virtual environment setup.
  3. If you want to run something in the poetry virtual environment, add poetry run as a prefix to the command you want to execute. For example, to run a python file: poetry run python3 script.py.

Credit

Citing Pearl

@misc{tangri2022pearl,
      title={Pearl: Parallel Evolutionary and Reinforcement Learning Library}, 
      author={Rohan Tangri and Danilo P. Mandic and Anthony G. Constantinides},
      year={2022},
      eprint={2201.09568},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgements

Pearl was inspired by Stable Baselines 3 and Tonic

You might also like...
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

Systemic Evolutionary Chemical Space Exploration for Drug Discovery
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

Deep learning with dynamic computation graphs in TensorFlow
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

PyTorch implementations of deep reinforcement learning algorithms and environments
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

Comments
  • Bump pillow from 9.0.0 to 9.0.1

    Bump pillow from 9.0.0 to 9.0.1

    Bumps pillow from 9.0.0 to 9.0.1.

    Release notes

    Sourced from pillow's releases.

    9.0.1

    https://pillow.readthedocs.io/en/stable/releasenotes/9.0.1.html

    Changes

    • In show_file, use os.remove to remove temporary images. CVE-2022-24303 #6010 [@​radarhere, @​hugovk]
    • Restrict builtins within lambdas for ImageMath.eval. CVE-2022-22817 #6009 [radarhere]
    Changelog

    Sourced from pillow's changelog.

    9.0.1 (2022-02-03)

    • In show_file, use os.remove to remove temporary images. CVE-2022-24303 #6010 [radarhere, hugovk]

    • Restrict builtins within lambdas for ImageMath.eval. CVE-2022-22817 #6009 [radarhere]

    Commits
    • 6deac9e 9.0.1 version bump
    • c04d812 Update CHANGES.rst [ci skip]
    • 4fabec3 Added release notes for 9.0.1
    • 02affaa Added delay after opening image with xdg-open
    • ca0b585 Updated formatting
    • 427221e In show_file, use os.remove to remove temporary images
    • c930be0 Restrict builtins within lambdas for ImageMath.eval
    • 75b69dd Dont need to pin for GHA
    • cd938a7 Autolink CWE numbers with sphinx-issues
    • 2e9c461 Add CVE IDs
    • See full diff in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Feature/hybrid

    Feature/hybrid

    Overhaul models and base agent structure to accommodate RL, MARL, EC in optimizing static functions and RL environments and hybrid algorithms combining RL and EC.

    opened by 09tangriro 1
  • MORE AGENTS

    MORE AGENTS

    The more agents created the better proof that the tools underlying work as intended.

    Agents should be tested on particular environments to ensure performance.

    feature good first issue 
    opened by 09tangriro 0
Releases(v0.4.1)
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022