This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Overview

Auto-Lambda

This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

We encourage readers to check out our project page, including more interesting discussions and insights which are not covered in our technical paper.

Multi-task Methods

We implemented all weighting and gradient-based baselines presented in the paper for computer vision tasks: Dense Prediction Tasks (for NYUv2 and CityScapes) and Multi-domain Classification Tasks (for CIFAR-100).

Specifically, we have covered the implementation of these following multi-task optimisation methods:

Weighting-based:

Gradient-based:

Note: Applying a combination of both weighting and gradient-based methods can further improve performance.

Datasets

We applied the same data pre-processing following our previous project: MTAN which experimented on:

  • NYUv2 [3 Tasks] - 13 Class Segmentation + Depth Estimation + Surface Normal. [288 x 384] Resolution.
  • CityScapes [3 Tasks] - 19 Class Segmentation + 10 Class Part Segmentation + Disparity (Inverse Depth) Estimation. [256 x 512] Resolution.

Note: We have included a new task: Part Segmentation for CityScapes dataset. The pre-processing file for CityScapes has also been included in the dataset folder.

Experiments

All experiments were written in PyTorch 1.7 and can be trained with different flags (hyper-parameters) when running each training script. We briefly introduce some important flags below.

Flag Name Usage Comments
network choose multi-task network: split, mtan both architectures are based on ResNet-50; only available in dense prediction tasks
dataset choose dataset: nyuv2, cityscapes only available in dense prediction tasks
weight choose weighting-based method: equal, uncert, dwa, autol only autol will behave differently when set to different primary tasks
grad_method choose gradient-based method: graddrop, pcgrad, cagrad weight and grad_method can be applied together
task choose primary tasks: seg, depth, normal for NYUv2, seg, part_seg, disp for CityScapes, all: a combination of all standard 3 tasks only available in dense prediction tasks
with_noise toggle on to add noise prediction task for training (to evaluate robustness in auxiliary learning setting) only available in dense prediction tasks
subset_id choose domain ID for CIFAR-100, choose -1 for the multi-task learning setting only available in CIFAR-100 tasks
autol_init initialisation of Auto-Lambda, default 0.1 only available when applying Auto-Lambda
autol_lr learning rate of Auto-Lambda, default 1e-4 for NYUv2 and 3e-5 for CityScapes only available when applying Auto-Lambda

Training Auto-Lambda in Multi-task / Auxiliary Learning Mode:

python trainer_dense.py --dataset [nyuv2, cityscapes] --task [PRIMARY_TASK] --weight autol --gpu 0   # for NYUv2 or CityScapes dataset
python trainer_cifar.py --subset_id [PRIMARY_DOMAIN_ID] --weight autol --gpu 0   # for CIFAR-100 dataset

Training in Single-task Learning Mode:

python trainer_dense_single.py --dataset [nyuv2, cityscapes] --task [PRIMARY_TASK]  --gpu 0   # for NYUv2 or CityScapes dataset
python trainer_cifar_single.py --subset_id [PRIMARY_DOMAIN_ID] --gpu 0   # for CIFAR-100 dataset

Note: All experiments in the original paper were trained from scratch without pre-training.

Benchmark

For standard 3 tasks in NYUv2 (without dense prediction task) in the multi-task learning setting with Split architecture, please follow the results below.

Method Sem. Seg. (mIOU) Depth (aErr.) Normal (mDist.) Delta MTL
Single 43.37 52.24 22.40 -
Equal 44.64 43.32 24.48 +3.57%
DWA 45.14 43.06 24.17 +4.58%
GradDrop 45.39 43.23 24.18 +4.65%
PCGrad 45.15 42.38 24.13 +5.09%
Uncertainty 45.98 41.26 24.09 +6.50%
CAGrad 46.14 41.91 23.52 +7.05%
Auto-Lambda 47.17 40.97 23.68 +8.21%
Auto-Lambda + CAGrad 48.26 39.82 22.81 +11.07%

Note: The results were averaged across three random seeds. You should expect the error range less than +/-1%.

Citation

If you found this code/work to be useful in your own research, please considering citing the following:

@article{liu2022auto-lambda,
  title={Auto-Lambda: Disentangling Dynamic Task Relationships},
  author={Liu, Shikun and James, Stephen and Davison, Andrew J and Johns, Edward},
  journal={arXiv preprint arXiv:2202.03091},
  year={2022}
}

Acknowledgement

We would like to thank @Cranial-XIX for his clean implementation for gradient-based optimisation methods.

Contact

If you have any questions, please contact [email protected].

Owner
Shikun Liu
Ph.D. Student, The Dyson Robotics Lab at Imperial College.
Shikun Liu
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023