SIR model parameter estimation using a novel algorithm for differentiated uniformization.

Overview

TenSIR

Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate matrices in tensor representation.

This repository contains the code for the paper.

Data

We used the data from the Austrian BMSGPK on the COVID-19 pandemic from March 2020 to August 2020. A CSV file containing the data used by us can be found here if the API is subject to change in the future.

Results

Kernel density estimation plot of points generated by Hamilton Monte Carlo simulation

HMC plot

The x marks the least squares estimate after grid search using the default deterministic model (system of ODEs).

Susceptible and infected people to/with COVID-19 in Austria during the early months of the pandemic

Timeline plot

Reproducing the results

Prerequisites

  • Python 3.7+ with Pip (tested with Python 3.9 and 3.10)

Setup

We advise you to use a virtual environment for running the code. After you activated it change to the source directory and run

pip install -r requirements.txt

Generating points

To exactly reproduce our results, one should use the generate-points.py script as

python generate-points.py <month> <run>

where <month> is a number from 3 (March 2020) to 8 (August 2020) and <run> specifies a number for an independent HMC run. The random number generator is seeded uniquely for each run by seed = month * 1000 + run. For the HMC simulation, we did 10 runs (with numbers 0 - 9) for each month (3 - 8) resulting in 60 runs total.

Note that the script assumes 48 CPU threads. This can be changed in the script, though diminishing returns are expected for thread counts greater than 60. More runs can of course be computed independently in parallel.

The parameters for all simulations were as follows (as seen in generate-points.py):

  • Initial parameter Theta0 = (0.1, 0.1) (*)
  • Covariance matrix M = diag(2)
  • "Learning rate" epsilon = 0.05
  • Leapfrog count L = 5 per generated point
  • Simulation until 100 points are accepted for each run
  • Discard the first 10% of accepted points as "burn-in" before plotting

(*) In our framework we use the convention Theta = (alpha, beta) and theta = (log(alpha), log(beta)) where alpha, beta are the parameters of the SIR model.

Leveraging HPC clusters

Especially for months March, April and August the simulation can take quite some time. If there is access to a compute cluster that uses slurm the slurm-job-template.sh can be utilized. Note that the venv must be setup on the target architecture.

Owner
The Spang Lab
Statistical Bioinformatics Department, University of Regensburg, Germany
The Spang Lab
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

RandWireNN Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition. Results Validation result on Imagenet

Seung-won Park 684 Nov 02, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023