SIR model parameter estimation using a novel algorithm for differentiated uniformization.

Overview

TenSIR

Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate matrices in tensor representation.

This repository contains the code for the paper.

Data

We used the data from the Austrian BMSGPK on the COVID-19 pandemic from March 2020 to August 2020. A CSV file containing the data used by us can be found here if the API is subject to change in the future.

Results

Kernel density estimation plot of points generated by Hamilton Monte Carlo simulation

HMC plot

The x marks the least squares estimate after grid search using the default deterministic model (system of ODEs).

Susceptible and infected people to/with COVID-19 in Austria during the early months of the pandemic

Timeline plot

Reproducing the results

Prerequisites

  • Python 3.7+ with Pip (tested with Python 3.9 and 3.10)

Setup

We advise you to use a virtual environment for running the code. After you activated it change to the source directory and run

pip install -r requirements.txt

Generating points

To exactly reproduce our results, one should use the generate-points.py script as

python generate-points.py <month> <run>

where <month> is a number from 3 (March 2020) to 8 (August 2020) and <run> specifies a number for an independent HMC run. The random number generator is seeded uniquely for each run by seed = month * 1000 + run. For the HMC simulation, we did 10 runs (with numbers 0 - 9) for each month (3 - 8) resulting in 60 runs total.

Note that the script assumes 48 CPU threads. This can be changed in the script, though diminishing returns are expected for thread counts greater than 60. More runs can of course be computed independently in parallel.

The parameters for all simulations were as follows (as seen in generate-points.py):

  • Initial parameter Theta0 = (0.1, 0.1) (*)
  • Covariance matrix M = diag(2)
  • "Learning rate" epsilon = 0.05
  • Leapfrog count L = 5 per generated point
  • Simulation until 100 points are accepted for each run
  • Discard the first 10% of accepted points as "burn-in" before plotting

(*) In our framework we use the convention Theta = (alpha, beta) and theta = (log(alpha), log(beta)) where alpha, beta are the parameters of the SIR model.

Leveraging HPC clusters

Especially for months March, April and August the simulation can take quite some time. If there is access to a compute cluster that uses slurm the slurm-job-template.sh can be utilized. Note that the venv must be setup on the target architecture.

Owner
The Spang Lab
Statistical Bioinformatics Department, University of Regensburg, Germany
The Spang Lab
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022