Meta Learning Backpropagation And Improving It (VSML)

Overview

Meta Learning Backpropagation And Improving It (VSML)

This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021.

Many concepts have been proposed for meta learning with neural networks (NNs), e.g., NNs that learn to reprogram fast weights, Hebbian plasticity, learned learning rules, and meta recurrent NNs. Our Variable Shared Meta Learning (VSML) unifies the above and demonstrates that simple weight-sharing and sparsity in an NN is sufficient to express powerful learning algorithms (LAs) in a reusable fashion. A simple implementation of VSML where the weights of a neural network are replaced by tiny LSTMs allows for implementing the backpropagation LA solely by running in forward-mode. It can even meta learn new LAs that differ from online backpropagation and generalize to datasets outside of the meta training distribution without explicit gradient calculation. Introspection reveals that our meta learned LAs learn through fast association in a way that is qualitatively different from gradient descent.

Installation

Create a virtual env

python3 -m venv venv
. venv/bin/activate

Install pip dependencies

pip3 install --upgrade pip wheel setuptools
pip3 install -r requirements.txt

Initialize weights and biases

wandb init

Inspect your results at https://wandb.ai/.

Run instructions

Non distributed

For any algorithm that does not require multiple workers.

python3 launch.py --config_files CONFIG_FILES --config arg1=val1 arg2=val2

Distributed

For any algorithm that does require multiple workers

GPU_COUNT=4 mpirun -n NUM_WORKERS python3 assign_gpu.py python3 launch.py

where NUM_WORKERS is the number of workers to run. The assign_gpu python script distributes the mpi workers evenly over the specified GPUs

Alternatively, specify the CUDA_VISIBLE_DEVICES instead of GPU_COUNT env variable:

CUDA_VISIBLE_DEVICES=0,2,3 mpirun -n NUM_WORKERS python3 assign_gpu.py python3 launch.py

Slurm-based cluster

Modify slurm/schedule.sh and slurm/job.sh to suit your environment.

bash slurm/schedule.sh --nodes=7 --ntasks-per-node=12 -- python3 launch.py --config_files CONFIG_FILES

If only a single worker is required (non-distributed), set --nodes=1 and --ntasks-per-node=1.

Remote (via ssh)

Modify ssh/schedule.sh to suit your environment. Requires gpustat in .local/bin/gpustat, via pip3 install --user gpustat. Also install tmux and mpirun.

bash ssh/schedule.sh --host HOST_NAME --nodes=7 --ntasks-per-node=12 -- python3 launch.py --config_files CONFIG_FILES

Example training runs

Section 4.2 Figure 6

VSML

slurm/schedule.py --nodes=128 --time 04:00:00 -- python3 launch.py --config_files configs/rand_proj.yaml

You can also try fewer nodes and use --config training.population_size=128. Or use backpropagation-based meta optimization --config_files configs/{rand_proj,backprop}.yaml.

Section 4.4 Figure 8

VSML

slurm/schedule.py --array=1-11 --nodes=128 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml

Meta RNN (Hochreiter 2001)

slurm/schedule.py --array=1-11 --nodes=32 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml --config_files configs/{metarnn,pad}.yaml --tags metarnn

Fast weight memory

slurm/schedule.py --array=1-11 --nodes=32 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml --config_files configs/{fwmemory,pad}.yaml --tags fwmemory

SGD

slurm/schedule.py --array=1-4 --nodes=2 --time 00:15:00 -- python3 launch.py --array configs/array/sgd.yaml --config_files configs/sgd.yaml --tags sgd

Hebbian

slurm/schedule.py --array=1-11 --nodes=32 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml --config_files configs/{hebbian,pad}.yaml --tags hebbian
Owner
Louis Kirsch
Building RL agents that meta-learn their own learning algorithm. Currently pursuing a PhD in AI at IDSIA with Jürgen Schmidhuber. Previous DeepMind intern.
Louis Kirsch
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022