PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Related tags

Deep LearningHDN
Overview

Homography Decomposition Networks for Planar Object Tracking

This project is the offical PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking. (AAAI 2022, Accepted)

Project Page | Paper

@misc{zhan2021homography,
      title={Homography Decomposition Networks for Planar Object Tracking}, 
      author={Xinrui Zhan and Yueran Liu and Jianke Zhu and Yang Li},
      year={2021},
      eprint={2112.07909},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Installation

Please find installation instructions in INSTALL.md.

Quick Start: Using HDN

Add HDN to your PYTHONPATH

vim ~/.bashrc
# add home of project to PYTHONPATH
export PYTHONPATH=/path/to/HDN:/path/to/HDN/homo_estimator/Deep_homography/Oneline_DLTv1:$PYTHONPATH

Download models

Google Drive or Baidu Netdisk (key: 8uhq)

Base Setting

The global parameters setting file is hdn/core/config.py You first need to set the base path:

__C.BASE.PROJ_PATH = /xxx/xxx/project_root/ #/home/Kay/SOT/server_86/HDN/   (path_to_hdn)
__C.BASE.BASE_PATH = /xxx/xxx/ #/home/Kay/SOT/                  (base_path_to_workspace)
__C.BASE.DATA_PATH = /xxx/xxx/data/POT  #/home/Kay/data/POT     (path to POT datasets)
__C.BASE.DATA_ROOT = /xxx/xxx   #/home/Kay/Data/Dataset/        (path to other datasets)

Demo

Planar Object Tracking and its applications we provide 4 modes:

  • tracking: tracking planar object with not less than 4 points in the object.
  • img_replace: replacing planar object with image .
  • video_replace: replacing planar object with video.
  • mosiac: adding mosiac to planar object.
python tools/demo.py 
--snapshot model/hdn-simi-sup-hm-unsup.pth 
--config experiments/tracker_homo_config/proj_e2e_GOT_unconstrained_v2.yaml 
--video demo/door.mp4 
--mode img_replace 
--img_insert demo/coke2.jpg #required in mode 'img_replace'  
--video_insert demo/t5_videos/replace-video/   #required in mode 'video_replace'
--save # whether save the results.

e.g.

python tools/demo.py  --snapshot model/hdn-simi-sup-hm-unsup.pth  --config experiments/tracker_homo_config/proj_e2e_GOT_unconstrained_v2.yaml --video demo/door.mp4 --mode img_replace --img_insert demo/coke2.jpg --save

we provide some real-world videos here

Download testing datasets

POT

For POT dataset, download the videos from POT280 and annotations from here

1. unzip POT_v.zip and POT_annotation.zip and put them in your cfg.BASE.DATA_PATH #unzip the zip files
  cd POT_v
  unzip "*.zip"
  cd ..

2. mkdir POT
   mkdir path_to_hdn/testing_dataset
   python path_to_hdn/toolkit/benchmarks/POT/pot_video_to_pic.py #video to images  
   ln -s path_to_data/POT  path_to_hdn/testing_dataset/POT #link to testing_datasets


4. python path_to_hdn/toolkit/benchmarks/POT/generate_json_for_POT.py --dataset POT210 #generate json annotation for POT
   python path_to_hdn/toolkit/benchmarks/POT/generate_json_for_POT.py --dataset POT280 

UCSB & POIC

Download from here put them in your cfg.BASE.DATA_PATH

ln -s path_to_data/UCSB  path_to_hdn/testing_dataset/UCSB #link to testing_datasets

generate json:

  python path_to_hdn/toolkit/benchmarks/POIC/generate_json_for_poic.py #generate json annotation for POT
  python path_to_hdn/toolkit/benchmarks/UCSB/generate_json_for_ucsb.py #generate json annotation for POT

Other datsets:

Download datasets and put them into testing_dataset directory. Jsons of commonly used datasets can be downloaded from here. If you want to test tracker on new dataset, please refer to pysot-toolkit to setting testing_dataset.

Test tracker

  • test POT
cd experiments/tracker_homo_config
python -u ../../tools/test.py \
	--snapshot ../../model/hdn-simi-sup-hm-unsup.pth \ # model path 
	--dataset POT210 \ # dataset name
	--config proj_e2e_GOT_unconstrained_v2.yaml # config file
	--vis   #display video

The testing results will in the current directory(./results/dataset/model_name/)

Eval tracker

For POT evaluation

1.use tools/change_pot_results_name.py to convert result_name(you need to set the path in the file).

2.use tools/convert2Homography.py to generate the homo file(you need to set the corresponding path in the file).

3.use POT toolkit to test the results. My version toolkit can be found here or official for other trackers:

For others:

For POIC, UCSB or POT evaluation on centroid precision, success rate, and robustness etc. assuming still in experiments/tracker_homo_config

python ../../tools/eval.py 	 \
	--tracker_path ./results \ # result path
	--dataset POIC        \ # dataset name
	--num 1 		 \ # number thread to eval
	--tracker_prefix 'model'   # tracker_name

The raw results can be downloaded at Google Drive or Baidu Netdisk (key:d98h)

Training 🔧

We use the COCO14 and GOT10K as our traning datasets. See TRAIN.md for detailed instruction.

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grants (61831015 and 62102152) and sponsored by CAAI-Huawei MindSpore Open Fund.

Our codes is based on SiamBAN and DeepHomography.

License

This project is released under the Apache 2.0 license.

Owner
CaptainHook
CaptainHook
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022