Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

Overview

CrossTeaching-SSOD

0. Introduction

Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

This repo includes training SSD300 and training Faster-RCNN-FPN on the Pascal VOC benchmark. The scripts about training SSD300 are based on ssd.pytorch (https://github.com/amdegroot/ssd.pytorch/). The scripts about training Faster-RCNN-FPN are based on the official Detectron2 repo (https://github.com/facebookresearch/detectron2/).

1. Environment

Python = 3.6.8

CUDA Version = 10.1

Pytorch Version = 1.6.0

detectron2 (for Faster-RCNN-FPN)

2. Prepare Dataset

Download and extract the Pascal VOC dataset.

For SSD300, specify the VOC_ROOT variable in data/voc0712.py and data/voc07_consistency.py as /home/username/dataset/VOCdevkit/

For Faster-RCNN-FPN, set the environmental variable in this way: export DETECTRON2_DATASETS=/home/username/dataset/VOCdevkit/

3. Instruction

3.1 Reproduce Table.1

Go into the SSD300 directory, then run the following scripts.

supervised training (VOC 07 labeled, without extra augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_ssd.py --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, without extra augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo39.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

supervised training (VOC 0712 labeled, without extra augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_ssd0712.py --save_interval 12000

supervised training (VOC 07 labeled, with horizontal flip):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_csd_sup2.py --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, with horizontal flip):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_csd.py --save_interval 12000

supervised training (VOC 0712 labeled, with horizontal flip):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_csd_sup_0712.py --save_interval 12000

supervised training (VOC 07 labeled, with mix-up augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_isd_sup2.py --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, with mix-up augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_only_isd.py --save_interval 12000

supervised training (VOC 0712 labeled, with mix-up augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_isd_sup_0712.py --save_interval 12000

3.2 Reproduce Table.2

Go into the SSD300 directory, then run the following scripts.

supervised training (VOC 07 labeled, without augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_ssd.py --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, confidence threshold=0.5):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo39.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, confidence threshold=0.8):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo39-0.8.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (random FP label, confidence threshold=0.5):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo102.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (use only TP, confidence threshold=0.5):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo36.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (use only TP, confidence threshold=0.8):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo36-0.8.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (use true label, confidence threshold=0.5):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo32.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

Go into the detectron2 directory.

supervised training (VOC 07 labeled, go into VOC07-sup-bs16):

python3 train_net.py --num-gpus 8 --config configs/voc/voc07_voc12.yaml

self-labeling (VOC 07 labeled + VOC 12 unlabeled, go into VOC07-sup-VOC12-unsup-self-teaching-0.7):

python3 train_net.py --resume --num-gpus 8 --config configs/voc/voc07_voc12.yaml MODEL.WEIGHTS output/model_0005999.pth SOLVER.CHECKPOINT_PERIOD 18000

self-labeling (random FP label, go into VOC07-sup-VOC12-unsup-self-teaching-0.7-random-wrong):

python3 train_net.py --resume --num-gpus 8 --config configs/voc/voc07_voc12.yaml MODEL.WEIGHTS output/model_0005999.pth SOLVER.CHECKPOINT_PERIOD 18000

self-labeling (use true label, go into VOC07-sup-VOC12-unsup-self-teaching-0.7-only-correct):

python3 train_net.py --resume --num-gpus 8 --config configs/voc/voc07_voc12.yaml MODEL.WEIGHTS output/model_0005999.pth SOLVER.CHECKPOINT_PERIOD 18000

3.3 Reproduce Table.3

Go into the SSD300 directory, then run the following scripts.

cross teaching

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo137.py --resume weights/ssd300_12000.pth --resume2 weights/default/ssd300_12000.2.pth --save_interval 12000 --ramp --ema_rate 0.99 --ema_step 10

cross teaching + mix-up augmentation

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo151.py --resume weights/ssd300_12000.pth --resume2 weights/default/ssd300_12000.2.pth --save_interval 12000 --ramp --ema_rate 0.99 --ema_step 10

Go into the detectron2/VOC07-sup-VOC12-unsup-cross-teaching directory.

cross teaching

python3 train_net.py --resume --num-gpus 8 --config configs/voc/voc07_voc12.yaml MODEL.WEIGHTS output/model_0005999.pth SOLVER.CHECKPOINT_PERIOD 18000

Owner
Bruno Ma
Phd candidate in NLPR in CASIA
Bruno Ma
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
a minimal terminal with python 😎😉

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023