Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

Overview

CrossTeaching-SSOD

0. Introduction

Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

This repo includes training SSD300 and training Faster-RCNN-FPN on the Pascal VOC benchmark. The scripts about training SSD300 are based on ssd.pytorch (https://github.com/amdegroot/ssd.pytorch/). The scripts about training Faster-RCNN-FPN are based on the official Detectron2 repo (https://github.com/facebookresearch/detectron2/).

1. Environment

Python = 3.6.8

CUDA Version = 10.1

Pytorch Version = 1.6.0

detectron2 (for Faster-RCNN-FPN)

2. Prepare Dataset

Download and extract the Pascal VOC dataset.

For SSD300, specify the VOC_ROOT variable in data/voc0712.py and data/voc07_consistency.py as /home/username/dataset/VOCdevkit/

For Faster-RCNN-FPN, set the environmental variable in this way: export DETECTRON2_DATASETS=/home/username/dataset/VOCdevkit/

3. Instruction

3.1 Reproduce Table.1

Go into the SSD300 directory, then run the following scripts.

supervised training (VOC 07 labeled, without extra augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_ssd.py --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, without extra augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo39.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

supervised training (VOC 0712 labeled, without extra augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_ssd0712.py --save_interval 12000

supervised training (VOC 07 labeled, with horizontal flip):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_csd_sup2.py --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, with horizontal flip):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_csd.py --save_interval 12000

supervised training (VOC 0712 labeled, with horizontal flip):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_csd_sup_0712.py --save_interval 12000

supervised training (VOC 07 labeled, with mix-up augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_isd_sup2.py --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, with mix-up augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_only_isd.py --save_interval 12000

supervised training (VOC 0712 labeled, with mix-up augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_isd_sup_0712.py --save_interval 12000

3.2 Reproduce Table.2

Go into the SSD300 directory, then run the following scripts.

supervised training (VOC 07 labeled, without augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_ssd.py --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, confidence threshold=0.5):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo39.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, confidence threshold=0.8):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo39-0.8.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (random FP label, confidence threshold=0.5):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo102.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (use only TP, confidence threshold=0.5):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo36.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (use only TP, confidence threshold=0.8):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo36-0.8.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (use true label, confidence threshold=0.5):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo32.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

Go into the detectron2 directory.

supervised training (VOC 07 labeled, go into VOC07-sup-bs16):

python3 train_net.py --num-gpus 8 --config configs/voc/voc07_voc12.yaml

self-labeling (VOC 07 labeled + VOC 12 unlabeled, go into VOC07-sup-VOC12-unsup-self-teaching-0.7):

python3 train_net.py --resume --num-gpus 8 --config configs/voc/voc07_voc12.yaml MODEL.WEIGHTS output/model_0005999.pth SOLVER.CHECKPOINT_PERIOD 18000

self-labeling (random FP label, go into VOC07-sup-VOC12-unsup-self-teaching-0.7-random-wrong):

python3 train_net.py --resume --num-gpus 8 --config configs/voc/voc07_voc12.yaml MODEL.WEIGHTS output/model_0005999.pth SOLVER.CHECKPOINT_PERIOD 18000

self-labeling (use true label, go into VOC07-sup-VOC12-unsup-self-teaching-0.7-only-correct):

python3 train_net.py --resume --num-gpus 8 --config configs/voc/voc07_voc12.yaml MODEL.WEIGHTS output/model_0005999.pth SOLVER.CHECKPOINT_PERIOD 18000

3.3 Reproduce Table.3

Go into the SSD300 directory, then run the following scripts.

cross teaching

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo137.py --resume weights/ssd300_12000.pth --resume2 weights/default/ssd300_12000.2.pth --save_interval 12000 --ramp --ema_rate 0.99 --ema_step 10

cross teaching + mix-up augmentation

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo151.py --resume weights/ssd300_12000.pth --resume2 weights/default/ssd300_12000.2.pth --save_interval 12000 --ramp --ema_rate 0.99 --ema_step 10

Go into the detectron2/VOC07-sup-VOC12-unsup-cross-teaching directory.

cross teaching

python3 train_net.py --resume --num-gpus 8 --config configs/voc/voc07_voc12.yaml MODEL.WEIGHTS output/model_0005999.pth SOLVER.CHECKPOINT_PERIOD 18000

Owner
Bruno Ma
Phd candidate in NLPR in CASIA
Bruno Ma
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022