Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Overview

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

This repository contains a TensorFlow implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" by Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh (accepted as ORAL presentation in ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) 2019).

Paper link: https://arxiv.org/pdf/1905.07953.pdf

Requirements

1) Download metis-5.1.0.tar.gz from http://glaros.dtc.umn.edu/gkhome/metis/metis/download and unpack it
2) cd metis-5.1.0
3) make config shared=1 prefix=~/.local/
4) make install
5) export METIS_DLL=~/.local/lib/libmetis.so
  • install required Python packages
 pip install -r requirements.txt

quick test to see whether you install metis correctly:

>>> import networkx as nx
>>> import metis
>>> G = metis.example_networkx()
>>> (edgecuts, parts) = metis.part_graph(G, 3)
  • We follow GraphSAGE's input format and its code for pre-processing the data.

  • This repository includes scripts for reproducing our experimental results on PPI and Reddit. Both datasets can be downloaded from this website.

Run Experiments.

  • After metis and networkx are set up, and datasets are ready, we can try the scripts.

  • We assume data files are stored under './data/{data-name}/' directory.

    For example, the path of PPI data files should be: data/ppi/ppi-{G.json, feats.npy, class_map.json, id_map.json}

  • For PPI data, you may run the following scripts to reproduce results in our paper

./run_ppi.sh

For reference, with a V100 GPU, running time per epoch on PPI is about 1 second.

The test F1 score will be around 0.9935 depending on different initialization.

  • For reddit data (need change the data_prefix path in .sh to point to the data):
./run_reddit.sh

In the experiment section of the paper, we show how to generate Amazon2M dataset. There is an external implementation for generating Amazon2M data following the same procedure in the paper (code and data).

Below shows a table of state-of-the-art performance from recent papers.

PPI Reddit
FastGCN (code) N/A 93.7
GraphSAGE (code) 61.2 95.4
VR-GCN (code) 97.8 96.3
GAT (code) 97.3 N/A
GaAN 98.71 96.36
GeniePath 98.5 N/A
Cluster-GCN 99.36 96.60

If you use any of the materials, please cite the following paper.

@inproceedings{clustergcn,
  title = {Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks},
  author = { Wei-Lin Chiang and Xuanqing Liu and Si Si and Yang Li and Samy Bengio and Cho-Jui Hsieh},
  booktitle = {ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)},
  year = {2019},
  url = {https://arxiv.org/pdf/1905.07953.pdf},
}

Owner
Jingwei Zheng
Jingwei Zheng
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 05, 2023
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022