Magenta: Music and Art Generation with Machine Intelligence

Related tags

Miscellaneousmagenta
Overview

Build Status PyPI version

Magenta is a research project exploring the role of machine learning in the process of creating art and music. Primarily this involves developing new deep learning and reinforcement learning algorithms for generating songs, images, drawings, and other materials. But it's also an exploration in building smart tools and interfaces that allow artists and musicians to extend (not replace!) their processes using these models. Magenta was started by some researchers and engineers from the Google Brain team, but many others have contributed significantly to the project. We use TensorFlow and release our models and tools in open source on this GitHub. If you’d like to learn more about Magenta, check out our blog, where we post technical details. You can also join our discussion group.

This is the home for our Python TensorFlow library. To use our models in the browser with TensorFlow.js, head to the Magenta.js repository.

Getting Started

Take a look at our colab notebooks for various models, including one on getting started. Magenta.js is also a good resource for models and demos that run in the browser. This and more, including blog posts and Ableton Live plugins, can be found at https://magenta.tensorflow.org.

Magenta Repo

Installation

Magenta maintains a pip package for easy installation. We recommend using Anaconda to install it, but it can work in any standard Python environment. We support Python 3 (>= 3.5). These instructions will assume you are using Anaconda.

Automated Install (w/ Anaconda)

If you are running Mac OS X or Ubuntu, you can try using our automated installation script. Just paste the following command into your terminal.

curl https://raw.githubusercontent.com/tensorflow/magenta/master/magenta/tools/magenta-install.sh > /tmp/magenta-install.sh
bash /tmp/magenta-install.sh

After the script completes, open a new terminal window so the environment variable changes take effect.

The Magenta libraries are now available for use within Python programs and Jupyter notebooks, and the Magenta scripts are installed in your path!

Note that you will need to run source activate magenta to use Magenta every time you open a new terminal window.

Manual Install (w/o Anaconda)

If the automated script fails for any reason, or you'd prefer to install by hand, do the following steps.

Install the Magenta pip package:

pip install magenta

NOTE: In order to install the rtmidi package that we depend on, you may need to install headers for some sound libraries. On Ubuntu Linux, this command should install the necessary packages:

sudo apt-get install build-essential libasound2-dev libjack-dev portaudio19-dev

On Fedora Linux, use

sudo dnf group install "C Development Tools and Libraries"
sudo dnf install SAASound-devel jack-audio-connection-kit-devel portaudio-devel

The Magenta libraries are now available for use within Python programs and Jupyter notebooks, and the Magenta scripts are installed in your path!

Using Magenta

You can now train our various models and use them to generate music, audio, and images. You can find instructions for each of the models by exploring the models directory.

Development Environment

If you want to develop on Magenta, you'll need to set up the full Development Environment.

First, clone this repository:

git clone https://github.com/tensorflow/magenta.git

Next, install the dependencies by changing to the base directory and executing the setup command:

pip install -e .

You can now edit the files and run scripts by calling Python as usual. For example, this is how you would run the melody_rnn_generate script from the base directory:

python magenta/models/melody_rnn/melody_rnn_generate --config=...

You can also install the (potentially modified) package with:

pip install .

Before creating a pull request, please also test your changes with:

pip install pytest-pylint
pytest

PIP Release

To build a new version for pip, bump the version and then run:

python setup.py test
python setup.py bdist_wheel --universal
twine upload dist/magenta-N.N.N-py2.py3-none-any.whl
Comments
  • can't reproduce the result of GANsynth

    can't reproduce the result of GANsynth

    Hi, I have finished training with the recommended hyperparameters after 4 days. But the generated sound with the midi file is very poor and lacks diversity. I trained only on the Acoustic Subset and used tensorflow 1.15.2. How should I reproduce the results in the GANsynth paper? @jesseengel

    opened by shansiliu95 30
  • MusicXML Parser for Magenta

    MusicXML Parser for Magenta

    Lightweight MusicXML parser for Magenta with no dependencies. Handles uncompressed (.xml) and compressed (.mxl) files. Translates MusicXML file into NoteSequences similar to how MIDI is imported.

    Because MusicXML differs from MIDI, different information is available to Magenta. For example, MusicXML does not contain MIDI CC data. However, MusicXML does contain other information (such as dynamic markings) which may be more useful in certain scenarios, such as using Magenta to generate sheet music (MusicXML files) in addition to MIDI files.

    This parser currently only supports input and does not support output to MusicXML files.

    Four public domain MusicXML files are included for unit testing.

    opened by jsawruk 27
  • ValueError: Unable to get the Filesystem for path gs://magentadata/datasets/maestro/v1.0.0/maestro-v1.0.0_test.tfrecord

    ValueError: Unable to get the Filesystem for path gs://magentadata/datasets/maestro/v1.0.0/maestro-v1.0.0_test.tfrecord

    I'm getting this error while trying to do the Data generation / preprocessing step of Score2Perf Music Transformer model on my computer. How can I fix it?

    opened by aletote 23
  • Tests failing with Bazel 0.2.3 and Tensorflow 0.9

    Tests failing with Bazel 0.2.3 and Tensorflow 0.9

    Hey all!

    I'm on a Mac OSX attempting to build. I installed tensorflow in python 3. When I run the

    bazel test //magenta:all
    

    Command, all 6 tests fail locally. The fail log for each says that python can't import tensorflow. I'm assuming the tests are being run by my Mac's default python automatically (2.7.10, doesn't have tensorflow installed), is there a way to change that to python3?

    Sorry if this is a dumb question!

    opened by SJCaldwell 20
  •  Resource exhausted: OOM when allocating tensor with shape[256,1114] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc

    Resource exhausted: OOM when allocating tensor with shape[256,1114] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc

    Hello,

    I'm running the last version MusicVAE from repository on ubuntu 18.04, cuda 10.1, tensorflow 2.2.0, configuration - hier-trio_16bar and have the error below (i tried for different batch sizes, even 1 and for different learning rates, but the problem is the same). Do you know how to fix it?

    2020-06-09 21:01:27.365621: I tensorflow/core/common_runtime/bfc_allocator.cc:1010] Stats: Limit: 14684815360 InUse: 14684616704 MaxInUse: 14684815360 NumAllocs: 26588 MaxAllocSize: 181403648

    2020-06-09 21:01:27.365991: W tensorflow/core/common_runtime/bfc_allocator.cc:439] **************************************************************************************************** 2020-06-09 21:01:27.366026: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at lstm_ops.cc:372 : Resource exhausted: OOM when allocating tensor with shape[256,1024] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc 2020-06-09 21:01:34.147376: W tensorflow/core/kernels/data/cache_dataset_ops.cc:794] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to dataset.cache().take(k).repeat(). You should use dataset.take(k).cache().repeat() instead. Traceback (most recent call last): File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1365, in _do_call return fn(*args) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1350, in _run_fn target_list, run_metadata) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1443, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found. (0) Resource exhausted: OOM when allocating tensor with shape[256,1114] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node swap_in_core_decoder_1/core_decoder_0/decoder/while/BasicDecoderStep/decoder/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_13_0}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

         [[add/_2901]]
    

    Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

    (1) Resource exhausted: OOM when allocating tensor with shape[256,1114] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node swap_in_core_decoder_1/core_decoder_0/decoder/while/BasicDecoderStep/decoder/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_13_0}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

    0 successful operations. 0 derived errors ignored.

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "music_vae_train.py", line 340, in console_entry_point() File "music_vae_train.py", line 336, in console_entry_point tf.app.run(main) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/platform/app.py", line 40, in run _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/absl/app.py", line 299, in run _run_main(main, args) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/absl/app.py", line 250, in _run_main sys.exit(main(argv)) File "music_vae_train.py", line 331, in main run(configs.CONFIG_MAP) File "music_vae_train.py", line 312, in run task=FLAGS.task) File "music_vae_train.py", line 211, in train is_chief=is_chief) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tf_slim/training/training.py", line 551, in train loss = session.run(train_op, run_metadata=run_metadata) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 778, in run run_metadata=run_metadata) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1283, in run run_metadata=run_metadata) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1384, in run raise six.reraise(*original_exc_info) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/six.py", line 703, in reraise raise value File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1369, in run return self._sess.run(*args, **kwargs) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1442, in run run_metadata=run_metadata) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 1200, in run return self._sess.run(*args, **kwargs) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 958, in run run_metadata_ptr) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1181, in _run feed_dict_tensor, options, run_metadata) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1359, in _do_run run_metadata) File "/home/burashnikova/env-tf22/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1384, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found. (0) Resource exhausted: OOM when allocating tensor with shape[256,1114] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node swap_in_core_decoder_1/core_decoder_0/decoder/while/BasicDecoderStep/decoder/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_13_0}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

         [[add/_2901]]
    

    Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

    (1) Resource exhausted: OOM when allocating tensor with shape[256,1114] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node swap_in_core_decoder_1/core_decoder_0/decoder/while/BasicDecoderStep/decoder/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_13_0}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

    0 successful operations. 0 derived errors ignored.

    opened by SashaBurashnikova 14
  • losing instruments information when converting midi to note sequence

    losing instruments information when converting midi to note sequence

    Hello, I'm doing manipulations on midi files using Magenta. I convert the midi file to NoteSequence using

    import magenta.music as mm
    mm.midi_file_to_sequence_proto(midi)
    

    The problem is that if I have unused midi channels (lets say 5 and 6) and used midi channels (lets say 7 and 8), the conversion put the used channels in place of empty ones, so I loose the instrument true setup, and when converting it back to midi and playing it with midi player, the instruments are mixed up. Any suggestion how to avoid this wrong conversion (only happens when there are some unused midi channels in the midi file). Thanks!

    opened by DavidPrimor 14
  • Generate melody with basic_rnn

    Generate melody with basic_rnn

    Hi,

    I'm trying to generate a basic melody using the code shown in the tutorial, and I've got 2 questions. Note I'm a beginner, hence my questions may be really simple.

    1. When I type in Python: BUNDLE_PATH=<E:\Storage\Documents\FEI_AI\magenta\BUNDLES> It returns Syntax Error,pointing at '<'

    So I used: BUNDLE_PATH='E:\Storage\Documents\FEI_AI\magenta\BUNDLES' It proceeds without error. But is it correct? Same goes with the next line involving CONFIG.

    1. After typing: melody_rnn_generate \ I typed: --config=${CONFIG} It returns Invalid Syntax, and points at '$'.

    Need advice, thank you!

    opened by EvilMudkip 14
  • GANSynth KeyError: 'tfds_data_dir'

    GANSynth KeyError: 'tfds_data_dir'

    Hi, by two days the GANSynth's Colab Demo give me an error on Environment Setup:

    Load model from /content/gansynth/acoustic_only/stage_00012/./model.ckpt-11000000
    ---------------------------------------------------------------------------
    KeyError                                  Traceback (most recent call last)
    <ipython-input-1-bad1649e76e0> in <module>()
         65 tf.reset_default_graph()
         66 flags = lib_flags.Flags({'batch_size_schedule': [BATCH_SIZE]})
    ---> 67 model = lib_model.Model.load_from_path(CKPT_DIR, flags)
         68 
         69 # Helper functions
    
    4 frames
    /usr/local/lib/python3.6/dist-packages/magenta/models/gansynth/lib/model.py in load_from_path(cls, path, flags)
        175     batch_size = flags.get('eval_batch_size',
        176                            train_util.get_batch_size(stage_id, **flags))
    --> 177     model = cls(stage_id, batch_size, flags)
        178     model.saver.restore(model.sess, ckpt)
        179     return model
    
    /usr/local/lib/python3.6/dist-packages/magenta/models/gansynth/lib/model.py in __init__(self, stage_id, batch_size, config)
        191     """
        192     data_helper = data_helpers.registry[config['data_type']](config)
    --> 193     real_images, real_one_hot_labels = data_helper.provide_data(batch_size)
        194 
        195     # gen_one_hot_labels = real_one_hot_labels
    
    /usr/local/lib/python3.6/dist-packages/magenta/models/gansynth/lib/data_helpers.py in provide_data(self, batch_size)
         64     with tf.name_scope('inputs'):
         65       with tf.device('/cpu:0'):
    ---> 66         dataset = self.dataset.provide_dataset()
         67         dataset = dataset.shuffle(buffer_size=1000)
         68         dataset = dataset.map(self._map_fn, num_parallel_calls=4)
    
    /usr/local/lib/python3.6/dist-packages/magenta/models/gansynth/lib/datasets.py in provide_dataset(self)
        116       return wave, one_hot_label, label, example['instrument']['source']
        117 
    --> 118     dataset = self._get_dataset_from_tfds()
        119     dataset = dataset.map(
        120         _parse_nsynth, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    
    /usr/local/lib/python3.6/dist-packages/magenta/models/gansynth/lib/datasets.py in _get_dataset_from_tfds(self)
         65       dataset = tfds.load(
         66           'nsynth/gansynth_subset:2.3.*',
    ---> 67           data_dir=self._config['tfds_data_dir'],
         68           split=tfds.Split.TRAIN,
         69           download=False)
    
    KeyError: 'tfds_data_dir'
    

    How can I resolve?

    opened by Junpyer 13
  • Where to get model.ckpt?

    Where to get model.ckpt?

    I'm trying to follow the instructions for arbitrary style transfer here, and it says that I need to download a pretrained model from this link. However, what I get is a tar.gz file and whenever I extract it, I only get the following files:

    $ tar xvzf arbitrary_style_transfer.tar.gz
    $ ls arbitrary_style_transfer
    model.ckpt-data-00000-of-000001 model.ckpt.index model.ckpt.meta
    

    Which one here should I use?

    opened by ljvmiranda921 13
  • Windows 10 Ananconda Install - Bazel fails

    Windows 10 Ananconda Install - Bazel fails

    Hi, I'm following the instructions on https://github.com/tensorflow/magenta for setting up a development environment.

    I've installed Bazel aok. I've installed Anaconda aok. I've created a tensorflow env and installed it.

    But when running bazel test //magenta/... I get

    ERROR: E:/music/magenta/magenta/magenta/models/arbitrary_image_stylization/BUILD:48:1: PythonZipper magenta/models/arbitrary_image_stylization/arbitrary_image_stylization_with_weights.zip failed (Exit -1)

    INFO: Elapsed time: 1.734s, Critical Path: 0.15s INFO: 0 processes. FAILED: Build did NOT complete successfully //magenta/common:beam_search_test NO STATUS //magenta/common:concurrency_test NO STATUS //magenta/common:nade_test NO STATUS etc etc

    Any clues?

    opened by sonicviz 13
  • Midi decoding error: Bad header in MIDI file

    Midi decoding error: Bad header in MIDI file

    By following the tutorial, when converting midi files to note sequences, it encounters following error

    ERROR:tensorflow:Midi decoding error <type 'exceptions.TypeError'>: Bad header in MIDI file

    when running

    bazel run //magenta/scripts:convert_midi_dir_to_note_sequences -- \
    --midi_dir=$MIDI_DIRECTORY \
    --output_file=$SEQUENCES_TFRECORD \
    --recursive
    

    No tfrecord file generated.

    I've tried many different midi files from midiworld website, the same error remains. So I guess it might not be the problem with midi files.

    Environment: Bazel 0.30 TensorFlow 0.9 under virtual environment

    opened by zuoxingdong 13
  • What is the status of magenta as a python module?

    What is the status of magenta as a python module?

    Greetings!

    I'm starting recently to learn about magenta, in particular I'm following a book by packt and I'm quite excited. I am, however, very confused about the status of magenta.

    Let me elaborate on the confusion:

    The README on this repository says that it's inactive, and I should check the website for active stuff. The website (python section) says that magenta is active, and links to github.com/tensorflow/magenta which redirects to this repository, which says that it's inactive. Getting vague Liar's Paradox vibes.

    This repository seems to be the upstream for whatever I get with pip install magenta, and it is still getting commits - which seems to imply that magenta as a python module is alive, as the website says. However in issue 2003 you say that magenta is developed, just not this repository.

    So what does this all mean?

    Is magenta as a python module alive or dead? It currently does not work on my main computer, is this something that is likely to change at some point? Does it make sense to create issues like I did?

    If the python module is still being developed but this repository is inactive, which is the active one?

    If the python module is not being developed but something is taking its place (please don't say javascript ❤️ ), what is the new project that i can use to train an AI with my music and have it make new stuff from it? And is there a book that I could buy to learn to do it?

    Thanks for all your work!

    opened by xstasi 0
  • cannot convert midi file to note sequence.

    cannot convert midi file to note sequence.

    I'm trying to convert midi to a note sequence, but it is not working. I've installed magenta 2.1.4 and tensorflow 2.11.0

    convert_dir_to_note_sequences \
    --input_dir= /Users/My_name/downloads/classic \
    --output_file=/Users/My_name/downloads/classic_out/noteseq/notesequences.tfrecord \
    --recursive
    

    I try to run the code and I get this error:

    
    File "/Users/My_name/magenta-env/lib/python3.8/site-packages/resampy/interpn.py", line 73, in <module>
        @guvectorize(
    TypeError: guvectorize() missing 1 required positional argument: 'signature'
    
    
    opened by kimurapyusers 0
  • Cannot run on Apple silicon (m1/m2) because of problematic dependencies

    Cannot run on Apple silicon (m1/m2) because of problematic dependencies

    Magenta has the following problematic dependencies:

    • numpy == 1.21.6

    This version of numpy gives runtime errors for reasons I'm not completely sure of, such as:

    RuntimeError: module compiled against API version 0xf but this version of numpy is 0xe
    

    This runtime problem disappears when numpy is upgraded, but naturally others arise.

    • numba == 0.49.1

    This is the worst offender as it depends on an old version of llvmlite, which in turn depends on an old version of llvm (8.x) that does not support the newer Apple targets. This must be upgraded to a much newer, possibly the newest release, as even llvm 9.x is problematic. llvm 11.x must be supported in order to run on this platform.

    • tensorflow == 2.9.1

    This is tensorflow-macos on Apple silicon, but I'm not sure whether you can add dependency alternatives to include it. A minor problem anyway, as it can be overridden by editing setup.py and installing locally.


    numba and numpy need upgrading though, until then there will be no way to run Magenta on new macs.

    Thanks!

    opened by xstasi 0
  • Errors when trying to install magenta

    Errors when trying to install magenta

    I get error messages for building wheels in various moduls (llvmlite, numba, python-rtmidi). I'm using Python 3.9, already tried to reinstall everything, installed other package versions. It just doesn't work. Can you help me please?

    (I removed some not so important code to not exceed the max. char. length here)

    Building wheels for collected packages: numba, python-rtmidi, llvmlite
      Building wheel for numba (setup.py) ... error
      error: subprocess-exited-with-error
    
      × python setup.py bdist_wheel did not run successfully.
      │ exit code: 1
      ╰─> [826 lines of output]
          TBB not found
          OpenMP disabled
          running bdist_wheel
          running build
          got version from file C:\Users\Dell\AppData\Local\Temp\pip-install-s_n9pbef\numba_9c8741e8713142ffb7ba6d62968ea471\numba/_version.py {'version': '0.49.1', 'full': 'd2cac8597ad2aa4074147d9c7595f5b5e9919901'}
          running build_py
          creating build
        
          running build_ext
          No module named 'numpy.distutils._msvccompiler' in numpy.distutils; trying from distutils
          building 'numba._dynfunc' extension
          error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tools": https://visualstudio.microsoft.com/visual-cpp-build-tools/
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
      ERROR: Failed building wheel for numba
      Running setup.py clean for numba
      Building wheel for python-rtmidi (setup.py) ... error
      error: subprocess-exited-with-error
    
      × python setup.py bdist_wheel did not run successfully.
      │ exit code: 1
      ╰─> [13 lines of output]
          running bdist_wheel
          running build
          running build_py
          creating build
          creating build\lib.win-amd64-cpython-39
          creating build\lib.win-amd64-cpython-39\rtmidi
          copying rtmidi\midiconstants.py -> build\lib.win-amd64-cpython-39\rtmidi
          copying rtmidi\midiutil.py -> build\lib.win-amd64-cpython-39\rtmidi
          copying rtmidi\release.py -> build\lib.win-amd64-cpython-39\rtmidi
          copying rtmidi\__init__.py -> build\lib.win-amd64-cpython-39\rtmidi
          running build_ext
          building 'rtmidi._rtmidi' extension
          error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tools": https://visualstudio.microsoft.com/visual-cpp-build-tools/
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
      ERROR: Failed building wheel for python-rtmidi
      Running setup.py clean for python-rtmidi
      Building wheel for llvmlite (setup.py) ... error
      error: subprocess-exited-with-error
    
      × python setup.py bdist_wheel did not run successfully.
      │ exit code: 1
      ╰─> [40 lines of output]
          running bdist_wheel
          C:\Users\Dell\anaconda3\python.exe C:\Users\Dell\AppData\Local\Temp\pip-install-s_n9pbef\llvmlite_4ce3f81337d447c18fde83ea427f20d5\ffi\build.py
          -- Selecting Windows SDK version  to target Windows 10.0.19044.
          CMake Error at CMakeLists.txt:3 (project):
            Failed to run MSBuild command:
    
              MSBuild.exe
    
            to get the value of VCTargetsPath:
    
              Das System kann die angegebene Datei nicht finden
    
    
    
          -- Configuring incomplete, errors occurred!
          See also "C:/Users/Dell/AppData/Local/Temp/tmp_9vh8mbn/CMakeFiles/CMakeOutput.log".
          CMake Error at CMakeLists.txt:3 (project):
            Generator
    
              Visual Studio 15 2017 Win64
    
            could not find any instance of Visual Studio.
    
    
    
          -- Configuring incomplete, errors occurred!
          See also "C:/Users/Dell/AppData/Local/Temp/tmp5dfq2vh1/CMakeFiles/CMakeOutput.log".
          Trying generator 'Visual Studio 14 2015 Win64'
          Trying generator 'Visual Studio 15 2017 Win64'
          Traceback (most recent call last):
            File "C:\Users\Dell\AppData\Local\Temp\pip-install-s_n9pbef\llvmlite_4ce3f81337d447c18fde83ea427f20d5\ffi\build.py", line 192, in <module>
              main()
            File "C:\Users\Dell\AppData\Local\Temp\pip-install-s_n9pbef\llvmlite_4ce3f81337d447c18fde83ea427f20d5\ffi\build.py", line 180, in main
              main_win32()
            File "C:\Users\Dell\AppData\Local\Temp\pip-install-s_n9pbef\llvmlite_4ce3f81337d447c18fde83ea427f20d5\ffi\build.py", line 89, in main_win32
              generator = find_win32_generator()
            File "C:\Users\Dell\AppData\Local\Temp\pip-install-s_n9pbef\llvmlite_4ce3f81337d447c18fde83ea427f20d5\ffi\build.py", line 85, in find_win32_generator
              raise RuntimeError("No compatible cmake generator installed on this machine")
          RuntimeError: No compatible cmake generator installed on this machine
          error: command 'C:\\Users\\Dell\\anaconda3\\python.exe' failed with exit code 1
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
      ERROR: Failed building wheel for llvmlite
      Running setup.py clean for llvmlite
    Failed to build numba python-rtmidi llvmlite
    Installing collected packages: python-rtmidi, pygtrie, mido, llvmlite, keras, flatbuffers, tensorflow-estimator, sox, scipy, protobuf, promise, numba, keras-preprocessing, importlib_resources, imageio, etils, absl-py, tf-slim, tensorflow-probability, sk-video, resampy, mir-eval, matplotlib, googleapis-common-protos, dm-sonnet, tensorflow-metadata, librosa, tensorflow-datasets, tensorboard, note-seq, tensorflow, magenta
      Attempting uninstall: python-rtmidi
        Found existing installation: python-rtmidi 1.4.9
        Uninstalling python-rtmidi-1.4.9:
          Successfully uninstalled python-rtmidi-1.4.9
      Running setup.py install for python-rtmidi ... error
      error: subprocess-exited-with-error
    
      × Running setup.py install for python-rtmidi did not run successfully.
      │ exit code: 1
      ╰─> [15 lines of output]
          running install
          C:\Users\Dell\anaconda3\lib\site-packages\setuptools\command\install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
            warnings.warn(
          running build
          running build_py
          creating build
          creating build\lib.win-amd64-cpython-39
          creating build\lib.win-amd64-cpython-39\rtmidi
          copying rtmidi\midiconstants.py -> build\lib.win-amd64-cpython-39\rtmidi
          copying rtmidi\midiutil.py -> build\lib.win-amd64-cpython-39\rtmidi
          copying rtmidi\release.py -> build\lib.win-amd64-cpython-39\rtmidi
          copying rtmidi\__init__.py -> build\lib.win-amd64-cpython-39\rtmidi
          running build_ext
          building 'rtmidi._rtmidi' extension
          error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tools": https://visualstudio.microsoft.com/visual-cpp-build-tools/
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
      Rolling back uninstall of python-rtmidi
      Moving to c:\users\dell\anaconda3\lib\site-packages\python_rtmidi-1.4.9.dist-info\
       from C:\Users\Dell\anaconda3\Lib\site-packages\~ython_rtmidi-1.4.9.dist-info
      Moving to c:\users\dell\anaconda3\lib\site-packages\rtmidi\
       from C:\Users\Dell\anaconda3\Lib\site-packages\~tmidi
    error: legacy-install-failure
    
    × Encountered error while trying to install package.
    ╰─> python-rtmidi
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for output from the failure.
    
    opened by Luka27 0
  • Installation error: PackagesNotFoundError & ResolutionImpossible

    Installation error: PackagesNotFoundError & ResolutionImpossible

    I am using mac venutra.

    Using the conda install I get this error during installation: image After this I attempted the manual install which gave me this error: image

    I don't believe downgrading to python 3.6 would work, as in the documentation it is said that verisons >= 3.5 work (correct me if i am wrong!)

    Cheers

    opened by 50NNY1 1
Releases(v2.1.4)
Owner
Magenta
An open source research project exploring the role of machine learning as a tool in the creative process.
Magenta
Backtest framework based on DAGs

MultitaskQueue It's a simple framework based on three composed concepts: Task: A task is the smaller unit of execution or simple a node in the DAG, ev

4 Dec 09, 2021
Force you (or your user) annotate Python function type hints.

Must-typing Force you (or your user) annotate function type hints. Notice: It's more like a joke, use it carefully. If you call must_typing in your mo

Konge 13 Feb 19, 2022
A cookiecutter to start a Python package with flawless practices and a magical workflow 🧙🏼‍♂️

PyPackage Cookiecutter This repository is a cookiecutter to quickly start a Python package. It contains a ton of very useful features 🐳 : Package man

Daniel Leal 16 Dec 13, 2021
nbsafety adds a layer of protection to computational notebooks by solving the stale dependency problem when executing cells out-of-order

nbsafety adds a layer of protection to computational notebooks by solving the stale dependency problem when executing cells out-of-order

150 Jan 07, 2023
C++ Environment InitiatorVisual Studio Code C / C++ Environment Initiator

Visual Studio Code C / C++ Environment Initiator Latest Version : v 1.0.1(2021/11/08) .exe link here About : Visual Studio Code에서 C/C++환경을 MinGW GCC/G

Junho Yoon 2 Dec 19, 2021
OLDBot (Online Lessons Discord Bot)

This program is designed to facilitate online lessons. With this you don't need to get up early. Just config and watch the program resolve itself. It automatically enters to the lesson at the specifi

Da4ndo 1 Nov 21, 2021
More granular intermediaries for legacy Minecraft versions

Orinthe/Intermediary mappings This repository contains the match information between different versions of Minecraft created by the Orinthe project, a

4 Jan 11, 2022
Flow control is the order in which statements or blocks of code are executed at runtime based on a condition. Learn Conditional statements, Iterative statements, and Transfer statements

03_Python_Flow_Control Introduction 👋 The control flow statements are an essential part of the Python programming language. A control flow statement

Milaan Parmar / Милан пармар / _米兰 帕尔马 209 Oct 31, 2022
Repo Home WPDrawBot - (Repo, Home, WP) A powerful programmatic 2D drawing application for MacOS X which generates graphics from Python scripts. (graphics, dev, mac)

DrawBot DrawBot is a powerful, free application for macOS that invites you to write Python scripts to generate two-dimensional graphics. The built-in

Frederik Berlaen 342 Dec 27, 2022
An ultra fast cross-platform multiple screenshots module in pure Python using ctypes.

Python MSS from mss import mss # The simplest use, save a screen shot of the 1st monitor with mss() as sct: sct.shot() An ultra fast cross-platfo

Mickaël Schoentgen 799 Dec 30, 2022
Runtime Type Checking in Python 3

typo This package intends to provide run-time type checking for functions annotated with argument type hints (standard library typing module in Python

Ivan Smirnov 26 Dec 13, 2022
A Google sheet which keeps track of the locations that want to visit and a price cutoff

FlightDeals Here's how the program works. First, I have a Google sheet which keeps track of the locations that I want to visit and a price cutoff. It

Lynne Munini 5 Nov 21, 2022
A cheat sheet for streamlit

Streamlit Cheat Sheet App to summarise streamlit docs v1.0.0 There is also an accompanying png and pdf version https://github.com/daniellewisDL/stream

Daniel Lewis 221 Jan 04, 2023
A tool to determine optimal projects for Gridcoin crunchers. Maximize your magnitude!

FindTheMag FindTheMag helps optimize your BOINC client for Gridcoin mining. You can group BOINC projects into two groups: "preferred" projects and "mi

7 Oct 04, 2022
Um jogo para treinar COO em python

WAR DUCK Este joguinho bem simples tem como objetivo treinar um pouquinho de POO com python. Não é nada muito complexo mas da pra se divertir Como rod

Gabriel Jospin 3 Sep 19, 2021
Easy to use phishing tool with 65 website templates. Author is not responsible for any misuse.

PyPhisher [+] Description : Ultimate phishing tool in python. Includes popular websites like facebook, twitter, instagram, github, reddit, gmail and m

KasRoudra 1.1k Dec 31, 2022
An application for automation of the mining function in the game Alienworlds.IO

alienautomation A Python script made to automate the tidious job of mining on AlienWorlds This script: Automatically opens the browser Automatically l

anonieXdev 42 Dec 03, 2022
User management system (UMS), has the primary purpose of connecting to an Active Directory (AD)

💿 Sistema de Gerenciamento de Usuário (SGU) 📚 Sobre o projeto Sistema de gerenciamento de usuários (SGU), tem o objetivo primário de se conectar a u

Patrick Viegas 2 Feb 25, 2022
🛠️ Plugin to integrate Chuy with Poetry

Archived This is bundled with Chuy since v1.3.0. Poetry Chuy Plugin This plugin integrates Chuy with Poetry. Note: This only works in Poetry 1.2.0 or

Eliaz Bobadilla 4 Sep 24, 2021
API to summarize input text

summaries API to summarize input text normal run $ docker-compose exec web python -m pytest disable warnings $ docker-compose exec web python -m pytes

Brad 1 Sep 08, 2021