Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

Related tags

Deep LearningJOINT
Overview

JOINT

This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021.

@inproceedings{joint_iccv_2021,
  title={Joint Inductive and Transductive Learning for Video Object Segmentation},
  author={Yunyao Mao, Ning Wang, Wengang Zhou, Houqiang Li},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  month = {October},
  year={2021}
}

JOINT overview figure

Installation

Clone this repository

git clone https://github.com/maoyunyao/JOINT.git

Install dependencies

Please check the detailed installation instructions.

Training

The whole network is trained with 8 NVIDIA GTX 1080Ti GPUs

conda activate pytracking
cd ltr
python run_training.py joint joint_stage1  # stage 1
python run_training.py joint joint_stage2  # stage 2

Note: We initialize the backbone ResNet with pre-trained Mask-RCNN weights as in LWL. These weights can be obtained from here. Before training, you need to download and save these weights in env_settings().pretrained_networks directory.

Evaluation

conda activate pytracking
cd pytracking
python run_tracker.py joint joint_davis --dataset_name dv2017_val        # DAVIS 2017 Val
python run_tracker.py joint joint_ytvos --dataset_name yt2018_valid_all  # YouTube-VOS 2018 Val
python run_tracker.py joint joint_ytvos --dataset_name yt2019_valid_all  # YouTube-VOS 2019 Val

Note: Before evaluation, the pretrained networks (see model zoo) should be downloaded and saved into the directory set by "network_path" in "pytracking/evaluation/local.py". By default, it is set to pytracking/networks.

Model Zoo

Models

Model YouTube-VOS 2018 (Overall Score) YouTube-VOS 2019 (Overall Score) DAVIS 2017 val (J&F score) Links Raw Results
JOINT_ytvos 83.1 82.8 -- model results
JOINT_davis -- -- 83.5 model results

Acknowledgments

  • Our JOINT segmentation tracker is implemented based on pytracking. We sincerely thank the authors Martin Danelljan and Goutam Bhat for providing such a great framework.
  • We adopt the few-shot learner proposed in LWL as the Induction branch.
Owner
Yunyao
A postgraduate student in University of Science and Technology of China
Yunyao
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022