Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

Related tags

Deep LearningJOINT
Overview

JOINT

This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021.

@inproceedings{joint_iccv_2021,
  title={Joint Inductive and Transductive Learning for Video Object Segmentation},
  author={Yunyao Mao, Ning Wang, Wengang Zhou, Houqiang Li},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  month = {October},
  year={2021}
}

JOINT overview figure

Installation

Clone this repository

git clone https://github.com/maoyunyao/JOINT.git

Install dependencies

Please check the detailed installation instructions.

Training

The whole network is trained with 8 NVIDIA GTX 1080Ti GPUs

conda activate pytracking
cd ltr
python run_training.py joint joint_stage1  # stage 1
python run_training.py joint joint_stage2  # stage 2

Note: We initialize the backbone ResNet with pre-trained Mask-RCNN weights as in LWL. These weights can be obtained from here. Before training, you need to download and save these weights in env_settings().pretrained_networks directory.

Evaluation

conda activate pytracking
cd pytracking
python run_tracker.py joint joint_davis --dataset_name dv2017_val        # DAVIS 2017 Val
python run_tracker.py joint joint_ytvos --dataset_name yt2018_valid_all  # YouTube-VOS 2018 Val
python run_tracker.py joint joint_ytvos --dataset_name yt2019_valid_all  # YouTube-VOS 2019 Val

Note: Before evaluation, the pretrained networks (see model zoo) should be downloaded and saved into the directory set by "network_path" in "pytracking/evaluation/local.py". By default, it is set to pytracking/networks.

Model Zoo

Models

Model YouTube-VOS 2018 (Overall Score) YouTube-VOS 2019 (Overall Score) DAVIS 2017 val (J&F score) Links Raw Results
JOINT_ytvos 83.1 82.8 -- model results
JOINT_davis -- -- 83.5 model results

Acknowledgments

  • Our JOINT segmentation tracker is implemented based on pytracking. We sincerely thank the authors Martin Danelljan and Goutam Bhat for providing such a great framework.
  • We adopt the few-shot learner proposed in LWL as the Induction branch.
Owner
Yunyao
A postgraduate student in University of Science and Technology of China
Yunyao
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022