Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Overview

Hold me tight! Influence of discriminative features on deep network boundaries

This is the source code to reproduce the experiments of the NeurIPS 2020 paper "Hold me tight! Influence of discriminative features on deep network boundaries" by Guillermo Ortiz-Jimenez*, Apostolos Modas*, Seyed-Mohsen Moosavi-Dezfooli and Pascal Frossard.

Abstract

Important insights towards the explainability of neural networks reside in the characteristics of their decision boundaries. In this work, we borrow tools from the field of adversarial robustness, and propose a new perspective that relates dataset features to the distance of samples to the decision boundary. This enables us to carefully tweak the position of the training samples and measure the induced changes on the boundaries of CNNs trained on large-scale vision datasets. We use this framework to reveal some intriguing properties of CNNs. Specifically, we rigorously confirm that neural networks exhibit a high invariance to non-discriminative features, and show that very small perturbations of the training samples in certain directions can lead to sudden invariances in the orthogonal ones. This is precisely the mechanism that adversarial training uses to achieve robustness.

Dependencies

To run our code on a Linux machine with a GPU, install the Python packages in a fresh Anaconda environment:

$ conda env create -f environment.yml
$ conda activate hold_me_tight

Experiments

This repository contains code to reproduce the following experiments:

You can reproduce this experiments separately using their individual scripts, or have a look at the comprehensive Jupyter notebook.

Pretrained architectures

We also provide a set of pretrained models that we used in our experiments. The exact hyperparameters and settings can be found in the Supplementary material of the paper. All the models are publicly available and can be downloaded from here. In order to execute the scripts using the pretrained models, it is recommended to download them and save them under the Models/Pretrained/ directory.

Architecture Dataset Training method
LeNet MNIST Standard
ResNet18 MNIST Standard
ResNet18 CIFAR10 Standard
VGG19 CIFAR10 Standard
DenseNet121 CIFAR10 Standard
LeNet Flipped MNIST Standard + Frequency flip
ResNet18 Flipped MNIST Standard + Frequency flip
ResNet18 Flipped CIFAR10 Standard + Frequency flip
VGG19 Flipped CIFAR10 Standard + Frequency flip
DenseNet121 Flipped CIFAR10 Standard + Frequency flip
ResNet50 Flipped ImageNet Standard + Frequency flip
ResNet18 Low-pass CIFAR10 Standard + Low-pass filtering
VGG19 Low-pass CIFAR10 Standard + Low-pass filtering
DenseNet121 Low-pass CIFAR10 Standard + Low-pass filtering
Robust LeNet MNIST L2 PGD adversarial training (eps = 2)
Robust ResNet18 MNIST L2 PGD adversarial training (eps = 2)
Robust ResNet18 CIFAR10 L2 PGD adversarial training (eps = 1)
Robust VGG19 CIFAR10 L2 PGD adversarial training (eps = 1)
Robust DenseNet121 CIFAR10 L2 PGD adversarial training (eps = 1)
Robust ResNet50 ImageNet L2 PGD adversarial training (eps = 3) (copied from here)
Robust LeNet Flipped MNIST L2 PGD adversarial training (eps = 2) with Dykstra projection + Frequency flip
Robust ResNet18 Flipped MNIST L2 PGD adversarial training (eps = 2) with Dykstra projection + Frequency flip
Robust ResNet18 Flipped CIFAR10 L2 PGD adversarial training (eps = 1) with Dykstra projection + Frequency flip
Robust VGG19 Flipped CIFAR10 L2 PGD adversarial training (eps = 1) with Dykstra projection + Frequency flip
Robust DenseNet121 Flipped CIFAR10 L2 PGD adversarial training (eps = 1) with Dykstra projection + Frequency flip

Reference

If you use this code, or some of the attached models, please cite the following paper:

@InCollection{OrtizModasHMT2020,
  TITLE = {{Hold me tight! Influence of discriminative features on deep network boundaries}},
  AUTHOR = {{Ortiz-Jimenez}, Guillermo and {Modas}, Apostolos and {Moosavi-Dezfooli}, Seyed-Mohsen and Frossard, Pascal},
  BOOKTITLE = {Advances in Neural Information Processing Systems 34},
  MONTH = dec,
  YEAR = {2020}
}
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Computer Vision Lab at Columbia University 139 Nov 18, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Facebook Research 605 Jan 02, 2023
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022