Color correction plugin for rasterio

Overview

rio-color

Build Status Coverage Status

A rasterio plugin for applying basic color-oriented image operations to geospatial rasters.

Goals

  • No heavy dependencies: rio-color is purposefully limited in scope to remain lightweight
  • Use the image structure: By iterating over the internal blocks of the input image, we keep memory usage low and predictable while gaining the ability to
  • Use multiple cores: thanks to rio-mucho
  • Retain all the GeoTIFF info and TIFF structure: nothing is lost. A GeoTIFF input → GeoTIFF output with the same georeferencing, internal tiling, compression, nodata values, etc.
  • Efficient colorspace conversions: the intensive math is written in highly optimized C functions and for use with scalars and numpy arrays.
  • CLI and Python module: accessing the functionality as a python module that can act on in-memory numpy arrays opens up new opportunities for composing this with other array operations without using intermediate files.

Operations

Gamma adjustment adjusts RGB values according to a power law, effectively brightening or darkening the midtones. It can be very effective in satellite imagery for reducing atmospheric haze in the blue and green bands.

Sigmoidal contrast adjustment can alter the contrast and brightness of an image in a way that matches human's non-linear visual perception. It works well to increase contrast without blowing out the very dark shadows or already-bright parts of the image.

Saturation can be thought of as the "colorfulness" of a pixel. Highly saturated colors are intense and almost cartoon-like, low saturation is more muted, closer to black and white. You can adjust saturation independently of brightness and hue but the data must be transformed into a different color space.

animated

Examples

Sigmoidal

Contrast

sigmoidal_contrast

Bias

sigmoidal_bias

Gamma

Red

gamma_red

Green

gamma_green

Blue

gamma_blue

Saturation

saturation

Combinations of operations

combos

Install

We highly recommend installing in a virtualenv. Once activated,

pip install -U pip
pip install rio-color

Or if you want to install from source

git checkout https://github.com/mapbox/rio-color.git
cd rio-color
pip install -U pip
pip install -r requirements-dev.txt
pip install -e .

Python API

rio_color.operations

The following functions accept and return numpy ndarrays. The arrays are assumed to be scaled 0 to 1. In some cases, the input array is assumed to be in the RGB colorspace.

All arrays use rasterio ordering with the shape as (bands, columns, rows). Be aware that other image processing software may use the (columns, rows, bands) axis order.

  • sigmoidal(arr, contrast, bias)
  • gamma(arr, g)
  • saturation(rgb, proportion)
  • simple_atmo(rgb, haze, contrast, bias)

The rio_color.operations.parse_operations function takes an operations string and returns a list of python functions which can be applied to an array.

ops = "gamma b 1.85, gamma rg 1.95, sigmoidal rgb 35 0.13, saturation 1.15"

assert arr.shape[0] == 3
assert arr.min() >= 0
assert arr.max() <= 1

for func in parse_operations(ops):
    arr = func(arr)

This provides a tiny domain specific language (DSL) to allow you to compose ordered chains of image manipulations using the above operations. For more information on operation strings, see the rio color command line help.

rio_color.colorspace

The colorspace module provides functions for converting scalars and numpy arrays between different colorspaces.

>>> from rio_color.colorspace import ColorSpace as cs  # enum defining available color spaces
>>> from rio_color.colorspace import convert, convert_arr
>>> convert_arr(array, src=cs.rgb, dst=cs.lch) # for arrays
...
>>> convert(r, g, b, src=cs.rgb, dst=cs.lch)  # for scalars
...
>>> dict(cs.__members__)  # can convert to/from any of these color spaces
{
 'rgb': <ColorSpace.rgb: 0>,
 'xyz': <ColorSpace.xyz: 1>,
 'lab': <ColorSpace.lab: 2>,
 'lch': <ColorSpace.lch: 3>,
 'luv': <ColorSpace.luv: 4>
 }

Command Line Interface

Rio color provides two command line interfaces:

rio color

A general-purpose color correction tool to perform gamma, contrast and saturation adjustments.

The advantages over Imagemagick convert: rio color is geo-aware, retains the profile of the source image, iterates efficiently over interal tiles and can use multiple cores.

Usage: rio color [OPTIONS] SRC_PATH DST_PATH OPERATIONS...

  Color correction

  Operations will be applied to the src image in the specified order.

  Available OPERATIONS include:

      "gamma BANDS VALUE"
          Applies a gamma curve, brightening or darkening midtones.
          VALUE > 1 brightens the image.

      "sigmoidal BANDS CONTRAST BIAS"
          Adjusts the contrast and brightness of midtones.
          BIAS > 0.5 darkens the image.

      "saturation PROPORTION"
          Controls the saturation in LCH color space.
          PROPORTION = 0 results in a grayscale image
          PROPORTION = 1 results in an identical image
          PROPORTION = 2 is likely way too saturated

  BANDS are specified as a single arg, no delimiters

      `123` or `RGB` or `rgb` are all equivalent

  Example:

      rio color -d uint8 -j 4 input.tif output.tif \
          gamma 3 0.95, sigmoidal rgb 35 0.13


Options:
  -j, --jobs INTEGER              Number of jobs to run simultaneously, Use -1
                                  for all cores, default: 1
  -d, --out-dtype [uint8|uint16]  Integer data type for output data, default:
                                  same as input
  --co NAME=VALUE                 Driver specific creation options.See the
                                  documentation for the selected output driver
                                  for more information.
  --help                          Show this message and exit.

Example:

$ rio color -d uint8 -j 4 rgb.tif test.tif \
    gamma G 1.85 gamma B 1.95 sigmoidal RGB 35 0.13 saturation 1.15

screen shot 2016-02-17 at 12 18 47 pm

rio atmos

Provides a higher-level tool for general atmospheric correction of satellite imagery using a proven set of operations to adjust for haze.

Usage: rio atmos [OPTIONS] SRC_PATH DST_PATH

  Atmospheric correction

Options:
  -a, --atmo FLOAT                How much to dampen cool colors, thus cutting
                                  through haze. 0..1 (0 is none), default:
                                  0.03.
  -c, --contrast FLOAT            Contrast factor to apply to the scene.
                                  -infinity..infinity(0 is none), default: 10.
  -b, --bias FLOAT                Skew (brighten/darken) the output. Lower
                                  values make it brighter. 0..1 (0.5 is none),
                                  default: 0.15
  -d, --out-dtype [uint8|uint16]  Integer data type for output data, default:
                                  same as input
  --as-color                      Prints the equivalent rio color command to
                                  stdout.Does NOT run either command, SRC_PATH
                                  will not be created
  -j, --jobs INTEGER              Number of jobs to run simultaneously, Use -1
                                  for all cores, default: 1
  --co NAME=VALUE                 Driver specific creation options.See the
                                  documentation for the selected output driver
                                  for more information.
  --help                          Show this message and exit.
Owner
Mapbox
Mapbox is the location data platform for mobile and web applications. We're changing the way people move around cities and explore our world.
Mapbox
A library to access OpenStreetMap related services

OSMPythonTools The python package OSMPythonTools provides easy access to OpenStreetMap (OSM) related services, among them an Overpass endpoint, Nomina

Franz-Benjamin Mocnik 342 Dec 31, 2022
Digital Earth Australia notebooks and tools repository

Repository for Digital Earth Australia Jupyter Notebooks: tools and workflows for geospatial analysis with Open Data Cube and xarray

Geoscience Australia 335 Dec 24, 2022
Search and download Copernicus Sentinel satellite images

sentinelsat Sentinelsat makes searching, downloading and retrieving the metadata of Sentinel satellite images from the Copernicus Open Access Hub easy

837 Dec 28, 2022
Introduction to Geospatial Analysis in Python

Introduction to Geospatial Analysis in Python This repository is in support of a talk on geospatial data. Data To recreate all of the examples, the da

Dillon Gardner 6 Oct 19, 2022
Python script that can be used to generate latitude/longitude coordinates for GOES-16 full-disk extent.

goes-latlon Python script that can be used to generate latitude/longitude coordinates for GOES-16 full-disk extent. 🌎 🛰️ The grid files can be acces

Douglas Uba 3 Apr 06, 2022
A set of utility functions for working with GeoJSON annotations in Kaibu

kaibu-utils A set of utility functions for working with Kaibu. Create a new repository Create a new repository and select imjoy-team/imjoy-python-temp

ImJoy Team 0 Dec 12, 2021
Pandas Network Analysis: fast accessibility metrics and shortest paths, using contraction hierarchies :world_map:

Pandana Pandana is a Python library for network analysis that uses contraction hierarchies to calculate super-fast travel accessibility metrics and sh

Urban Data Science Toolkit 321 Jan 05, 2023
A GUI widget for Linux to show current time in different timezones.

A GUI widget to show current time in different timezones (under development). To use this widget: Run scripts/startup.py Select a country. A list of t

B.Jothin kumar 11 Nov 10, 2022
EOReader is a multi-satellite reader allowing you to open optical and SAR data.

Remote-sensing opensource python library reading optical and SAR sensors, loading and stacking bands, clouds, DEM and index.

ICube-SERTIT 152 Dec 30, 2022
Calculate & view the trajectory and live position of any earth-orbiting satellite

satellite-visualization A cross-platform application to calculate & view the trajectory and live position of any earth-orbiting satellite in 3D. This

Space Technology and Astronomy Cell - Open Source Society 3 Jan 08, 2022
Implemented a Google Maps prototype that provides the shortest route in terms of distance

Implemented a Google Maps prototype that provides the shortest route in terms of distance, the fastest route, the route with the fewest turns, and a scenic route that avoids roads when provided a sou

1 Dec 26, 2021
Bacon - Band-limited Coordinate Networks for Multiscale Scene Representation

BACON: Band-limited Coordinate Networks for Multiscale Scene Representation Project Page | Video | Paper Official PyTorch implementation of BACON. BAC

Stanford Computational Imaging Lab 144 Dec 29, 2022
Tools for the extraction of OpenStreetMap street network data

OSMnet Tools for the extraction of OpenStreetMap (OSM) street network data. Intended to be used in tandem with Pandana and UrbanAccess libraries to ex

Urban Data Science Toolkit 47 Sep 21, 2022
Wraps GEOS geometry functions in numpy ufuncs.

PyGEOS PyGEOS is a C/Python library with vectorized geometry functions. The geometry operations are done in the open-source geometry library GEOS. PyG

362 Dec 23, 2022
Cloud Optimized GeoTIFF creation and validation plugin for rasterio

rio-cogeo Cloud Optimized GeoTIFF (COG) creation and validation plugin for Rasterio. Documentation: https://cogeotiff.github.io/rio-cogeo/ Source Code

216 Dec 31, 2022
Global topography (referenced to sea-level) in a 10 arcminute resolution grid

Earth - Topography grid at 10 arc-minute resolution Global 10 arc-minute resolution grids of topography (ETOPO1 ice-surface) referenced to mean sea-le

Fatiando a Terra Datasets 1 Jan 20, 2022
Computer Vision in Python

Mahotas Python Computer Vision Library Mahotas is a library of fast computer vision algorithms (all implemented in C++ for speed) operating over numpy

Luis Pedro Coelho 792 Dec 20, 2022
Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Apoorva Lal 5 May 18, 2022
A compilation of several single-beam bathymetry surveys of the Caribbean

Caribbean - Single-beam bathymetry This dataset is a compilation of several single-beam bathymetry surveys of the Caribbean ocean displaying a wide ra

Fatiando a Terra Datasets 0 Jan 20, 2022
Ingest and query genomic intervals from multiple BED files

Ingest and query genomic intervals from multiple BED files.

4 May 29, 2021