Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

Overview

A Differentiable Recurrent Surface for Asynchronous Event-Based Data

Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"
Authors: Marco Cannici, Marco Ciccone, Andrea Romanoni, Matteo Matteucci

Citing:

If you use Matrix-LSTM for research, please cite our accompanying ECCV2020 paper:

@InProceedings{Cannici_2020_ECCV,
    author = {Cannici, Marco and Ciccone, Marco and Romanoni, Andrea and Matteucci, Matteo},
    title = {A Differentiable Recurrent Surface for Asynchronous Event-Based Data},
    booktitle = {The European Conference on Computer Vision (ECCV)},
    month = {August},
    year = {2020}
}

Project Structure

The code is organized in two folders:

  • classification/ containing PyTorch code for N-Cars and N-Caltech101 experiments
  • opticalflow/ containing TensorFlow code for MVSEC experiments (code based on EV-FlowNet repository)

Note: the naming convention used within the code is not exactly the same as the one used in the paper. In particular, the groupByPixel operation is named group_rf_bounded in the code (i.e., group by receptive field, since it also supports receptive fields larger than 1x1), while the groupByTime operation is named intervals_to_batch.

Requirements

We provide a Dockerfile for both codebases in order to replicate the environments we used to run the paper experiments. In order to build and run the containers, the following packages are required:

  • Docker CE - version 18.09.0 (build 4d60db4)
  • NVIDIA Docker - version 2.0

If you have installed the latest version, you may need to modify the .sh files substituting:

  • nvidia-docker run with docker run
  • --runtime=nvidia with --gpus=all

You can verify which command works for you by running:

  • (scripts default) nvidia-docker run -ti --rm --runtime=nvidia -t nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 nvidia-smi
  • docker run -ti --rm --gpus=all -t nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 nvidia-smi

You should be able to see the output of nvidia-smi

Run Experiments

Details on how to run experiments are provided in separate README files contained in the classification and optical flow sub-folders:

Note: using Docker is not mandatory, but it will allow you to automate the process of installing dependencies and building CUDA kernels, all within a safe environment that won't modify any of your previous installations. Please, read the Dockerfile and requirements.yml files contained inside the <classification or opticalflow>/docker/ subfolders if you want to perform a standard conda/pip installation (you just need to manually run all RUN commands).

Owner
Marco Cannici
Marco Cannici
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
OpenMMLab Model Deployment Toolset

Introduction English | 简体中文 MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Major features F

OpenMMLab 1.5k Dec 30, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022