Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

Overview

A Differentiable Recurrent Surface for Asynchronous Event-Based Data

Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"
Authors: Marco Cannici, Marco Ciccone, Andrea Romanoni, Matteo Matteucci

Citing:

If you use Matrix-LSTM for research, please cite our accompanying ECCV2020 paper:

@InProceedings{Cannici_2020_ECCV,
    author = {Cannici, Marco and Ciccone, Marco and Romanoni, Andrea and Matteucci, Matteo},
    title = {A Differentiable Recurrent Surface for Asynchronous Event-Based Data},
    booktitle = {The European Conference on Computer Vision (ECCV)},
    month = {August},
    year = {2020}
}

Project Structure

The code is organized in two folders:

  • classification/ containing PyTorch code for N-Cars and N-Caltech101 experiments
  • opticalflow/ containing TensorFlow code for MVSEC experiments (code based on EV-FlowNet repository)

Note: the naming convention used within the code is not exactly the same as the one used in the paper. In particular, the groupByPixel operation is named group_rf_bounded in the code (i.e., group by receptive field, since it also supports receptive fields larger than 1x1), while the groupByTime operation is named intervals_to_batch.

Requirements

We provide a Dockerfile for both codebases in order to replicate the environments we used to run the paper experiments. In order to build and run the containers, the following packages are required:

  • Docker CE - version 18.09.0 (build 4d60db4)
  • NVIDIA Docker - version 2.0

If you have installed the latest version, you may need to modify the .sh files substituting:

  • nvidia-docker run with docker run
  • --runtime=nvidia with --gpus=all

You can verify which command works for you by running:

  • (scripts default) nvidia-docker run -ti --rm --runtime=nvidia -t nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 nvidia-smi
  • docker run -ti --rm --gpus=all -t nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 nvidia-smi

You should be able to see the output of nvidia-smi

Run Experiments

Details on how to run experiments are provided in separate README files contained in the classification and optical flow sub-folders:

Note: using Docker is not mandatory, but it will allow you to automate the process of installing dependencies and building CUDA kernels, all within a safe environment that won't modify any of your previous installations. Please, read the Dockerfile and requirements.yml files contained inside the <classification or opticalflow>/docker/ subfolders if you want to perform a standard conda/pip installation (you just need to manually run all RUN commands).

Owner
Marco Cannici
Marco Cannici
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022