Deep generative models of 3D grids for structure-based drug discovery

Overview

What is liGAN?

liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grids. It is based on libmolgrid and the gnina fork of caffe.

VAE paper - 2 minute talk

CVAE paper - 15 minute talk

Dependencies

  • numpy
  • pandas
  • scikit-image
  • openbabel
  • rdkit
  • molgrid
  • torch
  • protobuf
  • gnina version of caffe

Usage

You can use the scripts download_data.sh and download_weights.sh to download the test data and weights that were evaluated in the above papers.

The script generate.py is used to generate atomic density grids and molecular structures from a trained generative model.

Its basic usage can be seen in the scripts generate_vae.sh:

LIG_FILE=$1 # e.g. data/molport/0/102906000_8.sdf

python3 generate.py \
  --data_model_file models/data_48_0.5_molport.model \
  --gen_model_file models/vae.model \
  --gen_weights_file weights/gen_e_0.1_1_disc_x_10_0.molportFULL_rand_.0.0_gen_iter_100000.caffemodel \
  --rec_file data/molport/10gs_rec.pdb \
  --lig_file $LIG_FILE \
  --out_prefix VAE \
  --n_samples 10 \
  --fit_atoms \
  --dkoes_make_mol \
  --output_sdf \
  --output_dx \
  --gpu

And generate_cvae.sh:

REC_FILE=$1 # e.g. data/crossdock2020/PARP1_HUMAN_775_1012_0/2rd6_A_rec.pdb
LIG_FILE=$2 # e.g. data/crossdock2020/PARP1_HUMAN_775_1012_0/2rd6_A_rec_2rd6_78p_lig_tt_min.sdf

python3 generate.py \
  --data_model_file models/data_48_0.5_crossdock.model \
  --gen_model_file models/cvae.model \
  --gen_weights_file weights/lessskip_crossdocked_increased_1.lowrmsd.0_gen_iter_1500000.caffemodel \
  --rec_file $REC_FILE \
  --lig_file $LIG_FILE \
  --out_prefix CVAE \
  --n_samples 10 \
  --fit_atoms \
  --dkoes_make_mol \
  --output_sdf \
  --output_dx \
  --gpu

Both scripts can be run from the root directory of the repository.

Owner
Matt Ragoza
PhD student, Intelligent Systems Program, Pitt SCI
Matt Ragoza
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022