This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions.

Overview

NoW Evaluation

This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions.

Evaluation metric

Given a single monocular image, the challenge consists of reconstructing a 3D face. Since the predicted meshes occur in different local coordinate systems, the reconstructed 3D mesh is rigidly aligned (rotation, translation, and scaling) to the scan using a set of corresponding landmarks between the prediction and the scan. We further perform a rigid alignment based on the scan-to-mesh distance (which is the absolute distance between each scan vertex and the closest point in the mesh surface) between the ground truth scan, and the reconstructed mesh using the landmarks alignment as initialization. For more details, see the NoW Website or the RingNet paper.

Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision
Soubhik Sanyal, Timo Bolkart, Haiwen Feng, Michael J. Black
Computer Vision and Pattern Recognition (CVPR) 2019

Clone the repository

git clone https://github.com/soubhiksanyal/now_evaluation.git

Installation

Please install the virtual environment

mkdir <your_home_dir>/.virtualenvs
python3 -m venv <your_home_dir>/.virtualenvs/now_evaluation
source <your_home_dir>/.virtualenvs/now_evaluation/bin/activate

Make sure your pip version is up-to-date:

pip install -U pip

Install the requirements by using:

pip install -r requirements.txt

Install mesh processing libraries from MPI-IS/mesh within the virtual environment.

Installing Scan2Mesh distance:

Clone the flame-fitting repository and copy the required folders by the following comments

git clone https://github.com/Rubikplayer/flame-fitting.git
cp flame-fitting/smpl_webuser now_evaluation/smpl_webuser -r
cp flame-fitting/sbody now_evaluation/sbody -r

Clone Eigen and copy the it to the following folder

git clone https://gitlab.com/libeigen/eigen.git
cp eigen now_evaluation/sbody/alignment/mesh_distance/eigen -r

Edit the file 'now_evaluation/sbody/alignment/mesh_distance/setup.py' to set EIGEN_DIR to the location of Eigen. Then compile the code by following command

cd now_evaluation/sbody/alignment/mesh_distance
make

The installation of Scan2Mesh is followed by the codebase provided by flame-fitting. Please check that repository for more detailed instructions on Scan2Mesh installation.

Evaluation

Download the NoW Dataset and the validation set scans from the Now websiste, and predict 3D faces for all validation images.

Check data setup

Before running the now evaluation, 1) check that the predicted meshes can be successfuly loaded by the used mesh loader by running

python check_predictions.py <predicted_mesh_path>

Running this loads the <predicted_mesh_path> mesh and exports it to ./predicted_mesh_export.obj. Please check if this file can be loaded by e.g. MeshLab or any other mesh loader, and that the resulting mesh looks like the input mesh.

2) check that the landmarks for the predicted meshes are correct by running

python check_predictions.py <predicted_mesh_path> <predicted_mesh_landmark_path> <gt_scan_path> <gt_lmk_path> 

Running this loads the <predicted_mesh_path> mesh, rigidly aligns it with the the scan <gt_scan_path>, and outputs the aligned mesh to ./predicted_mesh_aligned.obj, and the cropped scan to ./cropped_scan.obj. Please check if the output mesh and scan are rigidly aligned by jointly opening them in e.g. MeshLab.

Error computation

To run the now evaluation on the validation set, run

python compute_error.py

The function in metric_computation() in compute_error.py is used to compute the error metric. You can run python compute_error.py <dataset_folder> <predicted_mesh_folder> <validatton_or_test_set>. For more options please see compute_error.py

The predicted_mesh_folder should in a similar structure as mentioned in the RingNet website.

Prior to computing the point-to-surface distance, a rigid alignment between each predicted mesh and the scan is computed. The rigid alignment computation requires for each predicted mesh a file with following 7 landmarks:

Visualization

Visualization of the reconstruction error is best done with a cumulative error curve. To generate a cumulative error plot, call generating_cumulative_error_plots() in the cumulative_errors.py with the list of output files and the corresponding list method names.

Note that ground truth scans are only provided for the validation set. In order to participate in the NoW challenge, please submit the test set predictions to [email protected] as described here.

Known issues

The used mesh loader is unable to load OBJ files with vertex colors appended to the vertices. I.e. if the OBJ contains lines of the following format v vx vy vz cr cg cb\n, export the meshes without vertex colors.

License

By using the model or the code code, you acknowledge that you have read the license terms of RingNet, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not use the code.

Citing

This codebase was developed for evaluation of the RingNet project. When using the code or NoW evaluation results in a scientific publication, please cite

@inproceedings{RingNet:CVPR:2019,
title = {Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision},
author = {Sanyal, Soubhik and Bolkart, Timo and Feng, Haiwen and Black, Michael},
booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
month = jun,
year = {2019},
month_numeric = {6}
}
Owner
Soubhik Sanyal
Currently Applied Scientist at Amazon Research PhD Student
Soubhik Sanyal
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023