πŸ“Š Charts with pure python

Overview

chart

MIT Travis PyPI Downloads

A zero-dependency python package that prints basic charts to a Jupyter output

Charts supported:

  • Bar graphs
  • Scatter plots
  • Histograms
  • πŸ‘ πŸ“Š πŸ‘

Examples

Bar graphs can be drawn quickly with the bar function:

from chart import bar

x = [500, 200, 900, 400]
y = ['marc', 'mummify', 'chart', 'sausagelink']

bar(x, y)
       marc: β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡             
    mummify: β–‡β–‡β–‡β–‡β–‡β–‡β–‡                       
      chart: β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡
sausagelink: β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡                              

And the bar function can accept columns from a pd.DataFrame:

from chart import bar
import pandas as pd

df = pd.DataFrame({
    'artist': ['Tame Impala', 'Childish Gambino', 'The Knocks'],
    'listens': [8_456_831, 18_185_245, 2_556_448]
})
bar(df.listens, df.artist, width=20, label_width=11, mark='πŸ”Š')
Tame Impala: πŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”Š           
Childish Ga: πŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”Š
 The Knocks: πŸ”ŠπŸ”ŠπŸ”Š                                

Histograms are just as easy:

from chart import histogram

x = [1, 2, 4, 3, 3, 1, 7, 9, 9, 1, 3, 2, 1, 2]

histogram(x)
β–‡        
β–‡        
β–‡        
β–‡        
β–‡ β–‡      
β–‡ β–‡      
β–‡ β–‡      
β–‡ β–‡     β–‡
β–‡ β–‡     β–‡
β–‡ β–‡   β–‡ β–‡

And they can accept objects created by scipy:

from chart import histogram
import scipy.stats as stats
import numpy as np

np.random.seed(14)
n = stats.norm(loc=0, scale=10)

histogram(n.rvs(100), bins=14, height=7, mark='πŸ‘')
            πŸ‘              
            πŸ‘   πŸ‘          
            πŸ‘ πŸ‘ πŸ‘          
            πŸ‘ πŸ‘ πŸ‘          
        πŸ‘   πŸ‘ πŸ‘ πŸ‘          
      πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘    
      πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘   πŸ‘

Scatter plots can be drawn with a simple scatter call:

from chart import scatter

x = range(0, 20)
y = range(0, 20)

scatter(x, y)
                                       β€’
                                   β€’ β€’  
                                 β€’      
                             β€’ β€’        
                         β€’ β€’            
                       β€’                
                  β€’  β€’                  
                β€’                       
            β€’ β€’                         
        β€’ β€’                             
      β€’                                 
  β€’ β€’                                   
β€’                                       

And at this point you gotta know it works with any np.array:

from chart import scatter
import numpy as np

np.random.seed(1)
N = 100
x = np.random.normal(100, 50, size=N)
y = x * -2 + 25 + np.random.normal(0, 25, size=N)

scatter(x, y, width=20, height=9, mark='^')
^^                  
 ^                  
    ^^^             
    ^^^^^^^         
       ^^^^^^       
        ^^^^^^^     
            ^^^^    
             ^^^^^ ^
                ^^ ^

In fact, all chart functions work with pandas, numpy, scipy and regular python objects.

Preprocessors

In order to create the simple outputs generated by bar, histogram, and scatter I had to create a couple of preprocessors, namely: NumberBinarizer and RangeScaler.

I tried to adhere to the scikit-learn API in their construction. Although you won't need them to use chart here they are for your tinkering:

from chart.preprocessing import NumberBinarizer

nb = NumberBinarizer(bins=4)
x = range(10)
nb.fit(x)
nb.transform(x)
[0, 0, 0, 1, 1, 2, 2, 3, 3, 3]
from chart.preprocessing import RangeScaler

rs = RangeScaler(out_range=(0, 10), round=False)
x = range(50, 59)
rs.fit_transform(x)
[0.0, 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, 10.0]

Installation

pip install chart

Contribute

For feature requests or bug reports, please use Github Issues

Inspiration

I wanted a super-light-weight library that would allow me to quickly grok data. Matplotlib had too many dependencies, and Altair seemed overkill. Though I really like the idea of termgraph, it didn't really fit well or integrate with my Jupyter workflow. Here's to chart πŸ₯‚ (still can't believe I got it on PyPI)

Owner
Max Humber
Human
Max Humber
🐞 πŸ“Š Ladybug extension to generate 2D charts

ladybug-charts Ladybug extension to generate 2D charts. Installation pip install ladybug-charts QuickStart import ladybug_charts API Documentation Loc

Ladybug Tools 3 Dec 30, 2022
A library for bridging Python and HTML/Javascript (via Svelte) for creating interactive visualizations

A library for bridging Python and HTML/Javascript (via Svelte) for creating interactive visualizations

Anthropic 98 Dec 27, 2022
UNMAINTAINED! Renders beautiful SVG maps in Python.

Kartograph is not maintained anymore As you probably already guessed from the commit history in this repo, Kartograph.py is not maintained, which mean

1k Dec 09, 2022
This is simply repo for line drawing rendering using freestyle in Blender.

blender_freestyle_line_drawing This is simply repo for line drawing rendering using freestyle in Blender. how to use blender2935 --background --python

MaxLin 3 Jul 02, 2022
Leyna's Visualizing Data With Python

Leyna's Visualizing Data Below is information on the number of bilingual students in three school districts in Massachusetts. You will also find infor

11 Oct 28, 2021
Create charts with Python in a very similar way to creating charts using Chart.js

Create charts with Python in a very similar way to creating charts using Chart.js. The charts created are fully configurable, interactive and modular and are displayed directly in the output of the t

Nicolas H 68 Dec 08, 2022
Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages

Wikipedia WordCloud App Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordclou

Siva Prakash 5 Jan 02, 2022
Movie recommendation using RASA, TigerGraph

Demo run: The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph, Steps

Sudha Vijayakumar 3 Sep 10, 2022
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
Lime: Explaining the predictions of any machine learning classifier

lime This project is about explaining what machine learning classifiers (or models) are doing. At the moment, we support explaining individual predict

Marco Tulio Correia Ribeiro 10.3k Dec 29, 2022
Sentiment Analysis application created with Python and Dash, hosted at socialsentiment.net

Social Sentiment Dash Application Live-streaming sentiment analysis application created with Python and Dash, hosted at SocialSentiment.net. Dash Tuto

Harrison 456 Dec 25, 2022
A Python function that makes flower plots.

Flower plot A Python 3.9+ function that makes flower plots. Installation This package requires at least Python 3.9. pip install

Thomas Roder 4 Jun 12, 2022
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

Leonardo Taccari 462 Jan 02, 2023
The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based metabolomics.

MINT (Metabolomics Integrator) The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based m

SΓΆren Wacker 0 May 04, 2022
Material for dataviz course at university of Bordeaux

Material for dataviz course at university of Bordeaux

Nicolas P. Rougier 50 Jul 17, 2022
Painlessly create beautiful matplotlib plots.

Announcement Thank you to everyone who has used prettyplotlib and made it what it is today! Unfortunately, I no longer have the bandwidth to maintain

Olga Botvinnik 1.6k Jan 06, 2023
A concise grammar of interactive graphics, built on Vega.

Vega-Lite Vega-Lite provides a higher-level grammar for visual analysis that generates complete Vega specifications. You can find more details, docume

Vega 4k Jan 08, 2023
βœ… Today I Learn

Today I Learn EDA numpy_100ex numpy_0~10 airline_satisfaction_prediction BERT_naver_movie_classification NLP_prepare NLP_Tweet_Emotion_Recognition tex

Yeonghoo_Ahn 3 Dec 15, 2022
Data Analysis: Data Visualization of Airlines

Data Analysis: Data Visualization of Airlines Anderson Cruz | London-UK | Linkedin | Nowa Capital Project: Traffic Airlines Airline Reporting Carrier

Anderson Cruz 1 Feb 10, 2022
ScisorWiz: Differential Isoform Visualizer for Long-Read RNA Sequencing Data

ScisorWiz: Vizualizer for Differential Isoform Expression README ScisorWiz is a linux-based R-package for visualizing differential isoform expression

Alexander Stein 6 Oct 04, 2022