Biterm Topic Model (BTM): modeling topics in short texts

Overview

Biterm Topic Model

CircleCI Documentation Status Codacy Badge Issues Downloads PyPI

Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actually, it is a cythonized version of BTM. This package is also capable of computing perplexity and semantic coherence metrics.

Development

Please note that bitermplus is actively improved. Refer to documentation to stay up to date.

Requirements

  • cython
  • numpy
  • pandas
  • scipy
  • scikit-learn
  • tqdm

Setup

Linux and Windows

There should be no issues with installing bitermplus under these OSes. You can install the package directly from PyPi.

pip install bitermplus

Or from this repo:

pip install git+https://github.com/maximtrp/bitermplus.git

Mac OS

First, you need to install XCode CLT and Homebrew. Then, install libomp using brew:

xcode-select --install
brew install libomp
pip3 install bitermplus

Example

Model fitting

import bitermplus as btm
import numpy as np
import pandas as pd

# IMPORTING DATA
df = pd.read_csv(
    'dataset/SearchSnippets.txt.gz', header=None, names=['texts'])
texts = df['texts'].str.strip().tolist()

# PREPROCESSING
# Obtaining terms frequency in a sparse matrix and corpus vocabulary
X, vocabulary, vocab_dict = btm.get_words_freqs(texts)
tf = np.array(X.sum(axis=0)).ravel()
# Vectorizing documents
docs_vec = btm.get_vectorized_docs(texts, vocabulary)
docs_lens = list(map(len, docs_vec))
# Generating biterms
biterms = btm.get_biterms(docs_vec)

# INITIALIZING AND RUNNING MODEL
model = btm.BTM(
    X, vocabulary, seed=12321, T=8, M=20, alpha=50/8, beta=0.01)
model.fit(biterms, iterations=20)
p_zd = model.transform(docs_vec)

# METRICS
perplexity = btm.perplexity(model.matrix_topics_words_, p_zd, X, 8)
coherence = btm.coherence(model.matrix_topics_words_, X, M=20)
# or
perplexity = model.perplexity_
coherence = model.coherence_

Results visualization

You need to install tmplot first.

import tmplot as tmp
tmp.report(model=model, docs=texts)

Report interface

Tutorial

There is a tutorial in documentation that covers the important steps of topic modeling (including stability measures and results visualization).

Comments
  • the topic distribution for all doc is similar

    the topic distribution for all doc is similar

    topic

    [9.99998750e-01 3.12592152e-07 3.12592152e-07 3.12592152e-07  3.12592152e-07] [9.99999903e-01 2.43742411e-08 2.43742411e-08 2.43742411e-08  2.43742411e-08] [9.99999264e-01 1.83996702e-07 1.83996702e-07 1.83996702e-07  1.83996702e-07] [9.99998890e-01 2.77376339e-07 2.77376339e-07 2.77376339e-07  2.77376339e-07] [9.99999998e-01 3.94318712e-10 3.94318712e-10 3.94318712e-10  3.94318712e-10] [9.99998428e-01 3.92884503e-07 3.92884503e-07 3.92884503e-07  3.92884503e-07]

    bug help wanted good first issue 
    opened by JennieGerhardt 11
  • ERROR: Failed building wheel for bitermplus

    ERROR: Failed building wheel for bitermplus

    creating build/temp.macosx-10.9-universal2-cpython-310/src/bitermplus clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -arch arm64 -arch x86_64 -g -I/Library/Frameworks/Python.framework/Versions/3.10/include/python3.10 -c src/bitermplus/_btm.c -o build/temp.macosx-10.9-universal2-cpython-310/src/bitermplus/_btm.o -Xpreprocessor -fopenmp src/bitermplus/_btm.c:772:10: fatal error: 'omp.h' file not found #include <omp.h> ^~~~~~~ 1 error generated. error: command '/usr/bin/clang' failed with exit code 1 [end of output]

    note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for bitermplus Failed to build bitermplus ERROR: Could not build wheels for bitermplus, which is required to install pyproject.toml-based projects

    bug documentation 
    opened by QinrenK 9
  • Got an unexpected result in marked sample

    Got an unexpected result in marked sample

    Hi, @maximtrp, I am trying to use bitermplus for topic modeling. However, when i use the marked sample to train the model. i got the unexpeted result. Firstly, the marked samples contain 5 types, but trained model get a huge perlexity when the the number of topic is 5. Secondly, when i test the topic parameter from 1 to 20, the perplexity was reduced following the increase of topic number. my code is following: df = pd.read_csv('dataPretreatment/data/corpus.txt', header=None, names=['texts']) texts = df['texts'].str.strip().tolist() print(df) stop_words = segmentWord.stopwordslist() perplexitys = [] coherences = []

    for T in range(1,21,1): print(T) X, vocabulary, vocab_dict = btm.get_words_freqs(texts, stop_words=stop_words) # Vectorizing documents docs_vec = btm.get_vectorized_docs(texts, vocabulary) # Generating biterms biterms = btm.get_biterms(docs_vec) # INITIALIZING AND RUNNING MODEL model = btm.BTM(X, vocabulary, seed=12321, T=T, M=50, alpha=50/T, beta=0.01) model.fit(biterms, iterations=2000) p_zd = model.transform(docs_vec) perplexity = btm.perplexity(model.matrix_topics_words_, p_zd, X, T) coherence = model.coherence_ perplexitys.append(perplexity) coherences.append(coherence)

    ``

    opened by Chen-X666 7
  • Getting the error 'CountVectorizer' object has no attribute 'get_feature_names_out'

    Getting the error 'CountVectorizer' object has no attribute 'get_feature_names_out'

    Hi @maximtrp, I am trying to use bitermplus for topic modeling. Running the code shows the error I mentioned in the title. Seems sth in get_words_freqs function goes wrong. I appreciate if you advise how I can fix that.

    opened by Sajad7010 4
  • Cannot find Closest topics and Stable topics

    Cannot find Closest topics and Stable topics

    Hello there, I am able to generate the model and visualize it. But when I tried to find the closest topics and stable topics, I get the error for code line:

    closest_topics, dist = btm.get_closest_topics(*matrix_topic_words, top_words=139, verbose=True)
    

    The error is:

    IndexError: too many indices for array: array is 1-dimensional, but 2 were indexed
    

    This is despite me separately checking the array size and it is 2-D. I am pasting the code below. Pl. can you check if I am doing anything wrong.

    Thank you.

    X, vocabulary, vocab_dict = btm.get_words_freqs(clean_text, max_df=.85, min_df=15,ngram_range=(1,2))
    
    # Vectorizing documents
    docs_vec = btm.get_vectorized_docs(clean_text, vocabulary)
    
    # Generating biterms
    Y = X.todense()
    biterms = btm.get_biterms(docs_vec, 15)
    
    # INITIALIZING AND RUNNING MODEL
    model = btm.BTM(X, vocabulary, T=8, M=10, alpha=500/1000, beta=0.01, win=15, has_background= True)
    model.fit(biterms, iterations=500, verbose=True)
    p_zd = model.transform(docs_vec,verbose=True)  
    print(p_zd) 
    
    # matrix of document-topics; topics vs. documents, topics vs. words probabilities 
    matrix_docs_topics = model.matrix_docs_topics_    #Documents vs topics probabilities matrix.
    topic_doc_matrix = model.matrix_topics_docs_      #Topics vs documents probabilities matrix.
    matrix_topic_words = model.matrix_topics_words_   #Topics vs words probabilities matrix.
    
    # Getting stable topics
    print("Array Dimension = ",len(matrix_topic_words.shape))
    closest_topics, dist = btm.get_closest_topics(*matrix_topic_words, top_words=100, verbose=True)
    stable_topics, stable_kl = btm.get_stable_topics(closest_topics, thres=0.7)
    
    # Stable topics indices list
    print(stable_topics)
    
    help wanted question 
    opened by RashmiBatra 4
  • Questions regarding Perplexity and Model Comparison with C++

    Questions regarding Perplexity and Model Comparison with C++

    I have two questions regarding this mode. First of all, I noticed that the evaluation metric perplexity was implemented. However, traditionally, the perplexity was mostly computed on the held-out dataset. Does that mean that when using this model, we should leave out certain proportion of the data and compute the perplexity on those samples that have not been used for training the model? My second question was that I was trying to compare this implementation with the C++ version from the original paper. The results (the top words in each topic) are quite different when the same parameters are used on the same corpus. Do you know what might be causing that and which part was implemented differently?

    help wanted question 
    opened by orpheus92 3
  • How do I get the topic words?

    How do I get the topic words?

    Hi,

    Firstly, thanks for sharing your code.

    Not an issue, just a question. I'm able to see the relevant words for a topic in the tmplot report. How do I get those words? I need to get at least the most three relevant terms.

    Thanks in advance.

    question 
    opened by aguinaldoabbj 3
  • failed building wheels

    failed building wheels

    Hi!

    I've got an error when running pip3 install bitermplus on MacOS (intel-based, Ventura), using python 3.10.8 in a separate venv (not anaconda):

    Building wheels for collected packages: bitermplus
      Building wheel for bitermplus (pyproject.toml) ... error
      error: subprocess-exited-with-error
    
      × Building wheel for bitermplus (pyproject.toml) did not run successfully.
      │ exit code: 1
      ╰─> [34 lines of output]
          Error in sitecustomize; set PYTHONVERBOSE for traceback:
          AssertionError:
          running bdist_wheel
          running build
          running build_py
          creating build
          creating build/lib.macosx-12-x86_64-cpython-310
          creating build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/__init__.py -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/_util.py -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          running egg_info
          writing src/bitermplus.egg-info/PKG-INFO
          writing dependency_links to src/bitermplus.egg-info/dependency_links.txt
          writing requirements to src/bitermplus.egg-info/requires.txt
          writing top-level names to src/bitermplus.egg-info/top_level.txt
          reading manifest file 'src/bitermplus.egg-info/SOURCES.txt'
          reading manifest template 'MANIFEST.in'
          adding license file 'LICENSE'
          writing manifest file 'src/bitermplus.egg-info/SOURCES.txt'
          copying src/bitermplus/_btm.c -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/_btm.pyx -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/_metrics.c -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/_metrics.pyx -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          running build_ext
          building 'bitermplus._btm' extension
          creating build/temp.macosx-12-x86_64-cpython-310
          creating build/temp.macosx-12-x86_64-cpython-310/src
          creating build/temp.macosx-12-x86_64-cpython-310/src/bitermplus
          clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX12.sdk -I/usr/local/opt/[email protected]/Frameworks/Python.framework/Versions/3.10/include/python3.10 -c src/bitermplus/_btm.c -o build/temp.macosx-12-x86_64-cpython-310/src/bitermplus/_btm.o -Xpreprocessor -fopenmp
          src/bitermplus/_btm.c:772:10: fatal error: 'omp.h' file not found
          #include <omp.h>
                   ^~~~~~~
          1 error generated.
          error: command '/usr/bin/clang' failed with exit code 1
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
      ERROR: Failed building wheel for bitermplus
    Failed to build bitermplus
    ERROR: Could not build wheels for bitermplus, which is required to install pyproject.toml-based projects
    

    Could this error be related to #29? I've tested on a PC and it worked though.

    bug documentation 
    opened by alanmaehara 2
  • Failed building wheel for bitermplus

    Failed building wheel for bitermplus

    Could not build wheels for bitermplus, which is required to install pyproject.toml-based projects

    When I try to install bitermplus with pip install bitermplus there is an error massage like this : note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for bitermplus ERROR: Could not build wheels for bitermplus, which is required to install pyproject.toml-based projects

    bug 
    opened by novra 2
  • Calculation of nmi,ami,ri

    Calculation of nmi,ami,ri

    I'm trying to test the model and see if it matches the data labels, but I can't get the topic for each document. I'm trying to get the list of labels to apply nmi, ami and ri so I'm wondering how to get the labels from the model. @maximtrp

    opened by gitassia 2
  • Implementation Guide

    Implementation Guide

    I was wondering is there any way to print the the topics generate by the BTM model, just like how I can do it with Gensim. In addition to that, I am getting all negative coherence values in the range of -500 or -600. I am not sure if I am doing something wrong. The issues is, I am not able to interpret the results, even plotting gives some strange output.

    image

    The following image show what is held by the variable adobe, again I am not sure if it needs to be in this manner or each row here needs to a list

    image
    opened by neel6762 2
Releases(v0.6.12)
Owner
Maksim Terpilowski
Research scientist
Maksim Terpilowski
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Collection of useful (to me) python scripts for interacting with napari

Napari scripts A collection of napari related tools in various state of disrepair/functionality. Browse_LIF_widget.py This module can be imported, for

5 Aug 15, 2022
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
Ecommerce product title recognition package

revizor This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you

Bureaucratic Labs 16 Mar 03, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
Natural Language Processing for Adverse Drug Reaction (ADR) Detection

Natural Language Processing for Adverse Drug Reaction (ADR) Detection This repo contains code from a project to identify ADRs in discharge summaries a

Medicines Optimisation Service - Austin Health 21 Aug 05, 2022
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Simple Text-To-Speech Bot For Discord

Simple Text-To-Speech Bot For Discord This is a very simple TTS bot for discord made with python. For this bot you need FFMPEG, see installation to se

1 Sep 26, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 884 Nov 11, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022