Biterm Topic Model (BTM): modeling topics in short texts

Overview

Biterm Topic Model

CircleCI Documentation Status Codacy Badge Issues Downloads PyPI

Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actually, it is a cythonized version of BTM. This package is also capable of computing perplexity and semantic coherence metrics.

Development

Please note that bitermplus is actively improved. Refer to documentation to stay up to date.

Requirements

  • cython
  • numpy
  • pandas
  • scipy
  • scikit-learn
  • tqdm

Setup

Linux and Windows

There should be no issues with installing bitermplus under these OSes. You can install the package directly from PyPi.

pip install bitermplus

Or from this repo:

pip install git+https://github.com/maximtrp/bitermplus.git

Mac OS

First, you need to install XCode CLT and Homebrew. Then, install libomp using brew:

xcode-select --install
brew install libomp
pip3 install bitermplus

Example

Model fitting

import bitermplus as btm
import numpy as np
import pandas as pd

# IMPORTING DATA
df = pd.read_csv(
    'dataset/SearchSnippets.txt.gz', header=None, names=['texts'])
texts = df['texts'].str.strip().tolist()

# PREPROCESSING
# Obtaining terms frequency in a sparse matrix and corpus vocabulary
X, vocabulary, vocab_dict = btm.get_words_freqs(texts)
tf = np.array(X.sum(axis=0)).ravel()
# Vectorizing documents
docs_vec = btm.get_vectorized_docs(texts, vocabulary)
docs_lens = list(map(len, docs_vec))
# Generating biterms
biterms = btm.get_biterms(docs_vec)

# INITIALIZING AND RUNNING MODEL
model = btm.BTM(
    X, vocabulary, seed=12321, T=8, M=20, alpha=50/8, beta=0.01)
model.fit(biterms, iterations=20)
p_zd = model.transform(docs_vec)

# METRICS
perplexity = btm.perplexity(model.matrix_topics_words_, p_zd, X, 8)
coherence = btm.coherence(model.matrix_topics_words_, X, M=20)
# or
perplexity = model.perplexity_
coherence = model.coherence_

Results visualization

You need to install tmplot first.

import tmplot as tmp
tmp.report(model=model, docs=texts)

Report interface

Tutorial

There is a tutorial in documentation that covers the important steps of topic modeling (including stability measures and results visualization).

Comments
  • the topic distribution for all doc is similar

    the topic distribution for all doc is similar

    topic

    [9.99998750e-01 3.12592152e-07 3.12592152e-07 3.12592152e-07  3.12592152e-07] [9.99999903e-01 2.43742411e-08 2.43742411e-08 2.43742411e-08  2.43742411e-08] [9.99999264e-01 1.83996702e-07 1.83996702e-07 1.83996702e-07  1.83996702e-07] [9.99998890e-01 2.77376339e-07 2.77376339e-07 2.77376339e-07  2.77376339e-07] [9.99999998e-01 3.94318712e-10 3.94318712e-10 3.94318712e-10  3.94318712e-10] [9.99998428e-01 3.92884503e-07 3.92884503e-07 3.92884503e-07  3.92884503e-07]

    bug help wanted good first issue 
    opened by JennieGerhardt 11
  • ERROR: Failed building wheel for bitermplus

    ERROR: Failed building wheel for bitermplus

    creating build/temp.macosx-10.9-universal2-cpython-310/src/bitermplus clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -arch arm64 -arch x86_64 -g -I/Library/Frameworks/Python.framework/Versions/3.10/include/python3.10 -c src/bitermplus/_btm.c -o build/temp.macosx-10.9-universal2-cpython-310/src/bitermplus/_btm.o -Xpreprocessor -fopenmp src/bitermplus/_btm.c:772:10: fatal error: 'omp.h' file not found #include <omp.h> ^~~~~~~ 1 error generated. error: command '/usr/bin/clang' failed with exit code 1 [end of output]

    note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for bitermplus Failed to build bitermplus ERROR: Could not build wheels for bitermplus, which is required to install pyproject.toml-based projects

    bug documentation 
    opened by QinrenK 9
  • Got an unexpected result in marked sample

    Got an unexpected result in marked sample

    Hi, @maximtrp, I am trying to use bitermplus for topic modeling. However, when i use the marked sample to train the model. i got the unexpeted result. Firstly, the marked samples contain 5 types, but trained model get a huge perlexity when the the number of topic is 5. Secondly, when i test the topic parameter from 1 to 20, the perplexity was reduced following the increase of topic number. my code is following: df = pd.read_csv('dataPretreatment/data/corpus.txt', header=None, names=['texts']) texts = df['texts'].str.strip().tolist() print(df) stop_words = segmentWord.stopwordslist() perplexitys = [] coherences = []

    for T in range(1,21,1): print(T) X, vocabulary, vocab_dict = btm.get_words_freqs(texts, stop_words=stop_words) # Vectorizing documents docs_vec = btm.get_vectorized_docs(texts, vocabulary) # Generating biterms biterms = btm.get_biterms(docs_vec) # INITIALIZING AND RUNNING MODEL model = btm.BTM(X, vocabulary, seed=12321, T=T, M=50, alpha=50/T, beta=0.01) model.fit(biterms, iterations=2000) p_zd = model.transform(docs_vec) perplexity = btm.perplexity(model.matrix_topics_words_, p_zd, X, T) coherence = model.coherence_ perplexitys.append(perplexity) coherences.append(coherence)

    ``

    opened by Chen-X666 7
  • Getting the error 'CountVectorizer' object has no attribute 'get_feature_names_out'

    Getting the error 'CountVectorizer' object has no attribute 'get_feature_names_out'

    Hi @maximtrp, I am trying to use bitermplus for topic modeling. Running the code shows the error I mentioned in the title. Seems sth in get_words_freqs function goes wrong. I appreciate if you advise how I can fix that.

    opened by Sajad7010 4
  • Cannot find Closest topics and Stable topics

    Cannot find Closest topics and Stable topics

    Hello there, I am able to generate the model and visualize it. But when I tried to find the closest topics and stable topics, I get the error for code line:

    closest_topics, dist = btm.get_closest_topics(*matrix_topic_words, top_words=139, verbose=True)
    

    The error is:

    IndexError: too many indices for array: array is 1-dimensional, but 2 were indexed
    

    This is despite me separately checking the array size and it is 2-D. I am pasting the code below. Pl. can you check if I am doing anything wrong.

    Thank you.

    X, vocabulary, vocab_dict = btm.get_words_freqs(clean_text, max_df=.85, min_df=15,ngram_range=(1,2))
    
    # Vectorizing documents
    docs_vec = btm.get_vectorized_docs(clean_text, vocabulary)
    
    # Generating biterms
    Y = X.todense()
    biterms = btm.get_biterms(docs_vec, 15)
    
    # INITIALIZING AND RUNNING MODEL
    model = btm.BTM(X, vocabulary, T=8, M=10, alpha=500/1000, beta=0.01, win=15, has_background= True)
    model.fit(biterms, iterations=500, verbose=True)
    p_zd = model.transform(docs_vec,verbose=True)  
    print(p_zd) 
    
    # matrix of document-topics; topics vs. documents, topics vs. words probabilities 
    matrix_docs_topics = model.matrix_docs_topics_    #Documents vs topics probabilities matrix.
    topic_doc_matrix = model.matrix_topics_docs_      #Topics vs documents probabilities matrix.
    matrix_topic_words = model.matrix_topics_words_   #Topics vs words probabilities matrix.
    
    # Getting stable topics
    print("Array Dimension = ",len(matrix_topic_words.shape))
    closest_topics, dist = btm.get_closest_topics(*matrix_topic_words, top_words=100, verbose=True)
    stable_topics, stable_kl = btm.get_stable_topics(closest_topics, thres=0.7)
    
    # Stable topics indices list
    print(stable_topics)
    
    help wanted question 
    opened by RashmiBatra 4
  • Questions regarding Perplexity and Model Comparison with C++

    Questions regarding Perplexity and Model Comparison with C++

    I have two questions regarding this mode. First of all, I noticed that the evaluation metric perplexity was implemented. However, traditionally, the perplexity was mostly computed on the held-out dataset. Does that mean that when using this model, we should leave out certain proportion of the data and compute the perplexity on those samples that have not been used for training the model? My second question was that I was trying to compare this implementation with the C++ version from the original paper. The results (the top words in each topic) are quite different when the same parameters are used on the same corpus. Do you know what might be causing that and which part was implemented differently?

    help wanted question 
    opened by orpheus92 3
  • How do I get the topic words?

    How do I get the topic words?

    Hi,

    Firstly, thanks for sharing your code.

    Not an issue, just a question. I'm able to see the relevant words for a topic in the tmplot report. How do I get those words? I need to get at least the most three relevant terms.

    Thanks in advance.

    question 
    opened by aguinaldoabbj 3
  • failed building wheels

    failed building wheels

    Hi!

    I've got an error when running pip3 install bitermplus on MacOS (intel-based, Ventura), using python 3.10.8 in a separate venv (not anaconda):

    Building wheels for collected packages: bitermplus
      Building wheel for bitermplus (pyproject.toml) ... error
      error: subprocess-exited-with-error
    
      × Building wheel for bitermplus (pyproject.toml) did not run successfully.
      │ exit code: 1
      ╰─> [34 lines of output]
          Error in sitecustomize; set PYTHONVERBOSE for traceback:
          AssertionError:
          running bdist_wheel
          running build
          running build_py
          creating build
          creating build/lib.macosx-12-x86_64-cpython-310
          creating build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/__init__.py -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/_util.py -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          running egg_info
          writing src/bitermplus.egg-info/PKG-INFO
          writing dependency_links to src/bitermplus.egg-info/dependency_links.txt
          writing requirements to src/bitermplus.egg-info/requires.txt
          writing top-level names to src/bitermplus.egg-info/top_level.txt
          reading manifest file 'src/bitermplus.egg-info/SOURCES.txt'
          reading manifest template 'MANIFEST.in'
          adding license file 'LICENSE'
          writing manifest file 'src/bitermplus.egg-info/SOURCES.txt'
          copying src/bitermplus/_btm.c -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/_btm.pyx -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/_metrics.c -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/_metrics.pyx -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          running build_ext
          building 'bitermplus._btm' extension
          creating build/temp.macosx-12-x86_64-cpython-310
          creating build/temp.macosx-12-x86_64-cpython-310/src
          creating build/temp.macosx-12-x86_64-cpython-310/src/bitermplus
          clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX12.sdk -I/usr/local/opt/[email protected]/Frameworks/Python.framework/Versions/3.10/include/python3.10 -c src/bitermplus/_btm.c -o build/temp.macosx-12-x86_64-cpython-310/src/bitermplus/_btm.o -Xpreprocessor -fopenmp
          src/bitermplus/_btm.c:772:10: fatal error: 'omp.h' file not found
          #include <omp.h>
                   ^~~~~~~
          1 error generated.
          error: command '/usr/bin/clang' failed with exit code 1
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
      ERROR: Failed building wheel for bitermplus
    Failed to build bitermplus
    ERROR: Could not build wheels for bitermplus, which is required to install pyproject.toml-based projects
    

    Could this error be related to #29? I've tested on a PC and it worked though.

    bug documentation 
    opened by alanmaehara 2
  • Failed building wheel for bitermplus

    Failed building wheel for bitermplus

    Could not build wheels for bitermplus, which is required to install pyproject.toml-based projects

    When I try to install bitermplus with pip install bitermplus there is an error massage like this : note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for bitermplus ERROR: Could not build wheels for bitermplus, which is required to install pyproject.toml-based projects

    bug 
    opened by novra 2
  • Calculation of nmi,ami,ri

    Calculation of nmi,ami,ri

    I'm trying to test the model and see if it matches the data labels, but I can't get the topic for each document. I'm trying to get the list of labels to apply nmi, ami and ri so I'm wondering how to get the labels from the model. @maximtrp

    opened by gitassia 2
  • Implementation Guide

    Implementation Guide

    I was wondering is there any way to print the the topics generate by the BTM model, just like how I can do it with Gensim. In addition to that, I am getting all negative coherence values in the range of -500 or -600. I am not sure if I am doing something wrong. The issues is, I am not able to interpret the results, even plotting gives some strange output.

    image

    The following image show what is held by the variable adobe, again I am not sure if it needs to be in this manner or each row here needs to a list

    image
    opened by neel6762 2
Releases(v0.6.12)
Owner
Maksim Terpilowski
Research scientist
Maksim Terpilowski
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
All the code I wrote for Overwatch-related projects that I still own the rights to.

overwatch_shit.zip This is (eventually) going to contain all the software I wrote during my five-year imprisonment stay playing Overwatch. I'll be add

zkxjzmswkwl 2 Dec 31, 2021
This is a Prototype of an Ai ChatBot "Tea and Coffee Supplier" using python.

Ai-ChatBot-Python A chatbot is an intelligent system which can hold a conversation with a human using natural language in real time. Due to the rise o

1 Oct 30, 2021
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022
A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

Robert Bogan Kang 3 May 25, 2022
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Deep learning for NLP crash course at ABBYY.

Deep NLP Course at ABBYY Deep learning for NLP crash course at ABBYY. Suggested textbook: Neural Network Methods in Natural Language Processing by Yoa

Dan Anastasyev 597 Dec 18, 2022
Shared code for training sentence embeddings with Flax / JAX

flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa

Nils Reimers 23 Dec 30, 2022
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
A Plover python dictionary allowing for consistent symbol input with specification of attachment and capitalisation in one stroke.

Emily's Symbol Dictionary Design This dictionary was created with the following goals in mind: Have a consistent method to type (pretty much) every sy

Emily 68 Jan 07, 2023
Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

RAMI ALRFOU 2.1k Jan 07, 2023
Pretrained Japanese BERT models

Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod

Inui Laboratory 387 Dec 30, 2022
Predict the spans of toxic posts that were responsible for the toxic label of the posts

toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant

Ilias Antonopoulos 3 Jul 24, 2022
Code of paper: A Recurrent Vision-and-Language BERT for Navigation

Recurrent VLN-BERT Code of the Recurrent-VLN-BERT paper: A Recurrent Vision-and-Language BERT for Navigation Yicong Hong, Qi Wu, Yuankai Qi, Cristian

YicongHong 109 Dec 21, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 17, 2021