Biterm Topic Model (BTM): modeling topics in short texts

Overview

Biterm Topic Model

CircleCI Documentation Status Codacy Badge Issues Downloads PyPI

Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actually, it is a cythonized version of BTM. This package is also capable of computing perplexity and semantic coherence metrics.

Development

Please note that bitermplus is actively improved. Refer to documentation to stay up to date.

Requirements

  • cython
  • numpy
  • pandas
  • scipy
  • scikit-learn
  • tqdm

Setup

Linux and Windows

There should be no issues with installing bitermplus under these OSes. You can install the package directly from PyPi.

pip install bitermplus

Or from this repo:

pip install git+https://github.com/maximtrp/bitermplus.git

Mac OS

First, you need to install XCode CLT and Homebrew. Then, install libomp using brew:

xcode-select --install
brew install libomp
pip3 install bitermplus

Example

Model fitting

import bitermplus as btm
import numpy as np
import pandas as pd

# IMPORTING DATA
df = pd.read_csv(
    'dataset/SearchSnippets.txt.gz', header=None, names=['texts'])
texts = df['texts'].str.strip().tolist()

# PREPROCESSING
# Obtaining terms frequency in a sparse matrix and corpus vocabulary
X, vocabulary, vocab_dict = btm.get_words_freqs(texts)
tf = np.array(X.sum(axis=0)).ravel()
# Vectorizing documents
docs_vec = btm.get_vectorized_docs(texts, vocabulary)
docs_lens = list(map(len, docs_vec))
# Generating biterms
biterms = btm.get_biterms(docs_vec)

# INITIALIZING AND RUNNING MODEL
model = btm.BTM(
    X, vocabulary, seed=12321, T=8, M=20, alpha=50/8, beta=0.01)
model.fit(biterms, iterations=20)
p_zd = model.transform(docs_vec)

# METRICS
perplexity = btm.perplexity(model.matrix_topics_words_, p_zd, X, 8)
coherence = btm.coherence(model.matrix_topics_words_, X, M=20)
# or
perplexity = model.perplexity_
coherence = model.coherence_

Results visualization

You need to install tmplot first.

import tmplot as tmp
tmp.report(model=model, docs=texts)

Report interface

Tutorial

There is a tutorial in documentation that covers the important steps of topic modeling (including stability measures and results visualization).

Comments
  • the topic distribution for all doc is similar

    the topic distribution for all doc is similar

    topic

    [9.99998750e-01 3.12592152e-07 3.12592152e-07 3.12592152e-07  3.12592152e-07] [9.99999903e-01 2.43742411e-08 2.43742411e-08 2.43742411e-08  2.43742411e-08] [9.99999264e-01 1.83996702e-07 1.83996702e-07 1.83996702e-07  1.83996702e-07] [9.99998890e-01 2.77376339e-07 2.77376339e-07 2.77376339e-07  2.77376339e-07] [9.99999998e-01 3.94318712e-10 3.94318712e-10 3.94318712e-10  3.94318712e-10] [9.99998428e-01 3.92884503e-07 3.92884503e-07 3.92884503e-07  3.92884503e-07]

    bug help wanted good first issue 
    opened by JennieGerhardt 11
  • ERROR: Failed building wheel for bitermplus

    ERROR: Failed building wheel for bitermplus

    creating build/temp.macosx-10.9-universal2-cpython-310/src/bitermplus clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -arch arm64 -arch x86_64 -g -I/Library/Frameworks/Python.framework/Versions/3.10/include/python3.10 -c src/bitermplus/_btm.c -o build/temp.macosx-10.9-universal2-cpython-310/src/bitermplus/_btm.o -Xpreprocessor -fopenmp src/bitermplus/_btm.c:772:10: fatal error: 'omp.h' file not found #include <omp.h> ^~~~~~~ 1 error generated. error: command '/usr/bin/clang' failed with exit code 1 [end of output]

    note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for bitermplus Failed to build bitermplus ERROR: Could not build wheels for bitermplus, which is required to install pyproject.toml-based projects

    bug documentation 
    opened by QinrenK 9
  • Got an unexpected result in marked sample

    Got an unexpected result in marked sample

    Hi, @maximtrp, I am trying to use bitermplus for topic modeling. However, when i use the marked sample to train the model. i got the unexpeted result. Firstly, the marked samples contain 5 types, but trained model get a huge perlexity when the the number of topic is 5. Secondly, when i test the topic parameter from 1 to 20, the perplexity was reduced following the increase of topic number. my code is following: df = pd.read_csv('dataPretreatment/data/corpus.txt', header=None, names=['texts']) texts = df['texts'].str.strip().tolist() print(df) stop_words = segmentWord.stopwordslist() perplexitys = [] coherences = []

    for T in range(1,21,1): print(T) X, vocabulary, vocab_dict = btm.get_words_freqs(texts, stop_words=stop_words) # Vectorizing documents docs_vec = btm.get_vectorized_docs(texts, vocabulary) # Generating biterms biterms = btm.get_biterms(docs_vec) # INITIALIZING AND RUNNING MODEL model = btm.BTM(X, vocabulary, seed=12321, T=T, M=50, alpha=50/T, beta=0.01) model.fit(biterms, iterations=2000) p_zd = model.transform(docs_vec) perplexity = btm.perplexity(model.matrix_topics_words_, p_zd, X, T) coherence = model.coherence_ perplexitys.append(perplexity) coherences.append(coherence)

    ``

    opened by Chen-X666 7
  • Getting the error 'CountVectorizer' object has no attribute 'get_feature_names_out'

    Getting the error 'CountVectorizer' object has no attribute 'get_feature_names_out'

    Hi @maximtrp, I am trying to use bitermplus for topic modeling. Running the code shows the error I mentioned in the title. Seems sth in get_words_freqs function goes wrong. I appreciate if you advise how I can fix that.

    opened by Sajad7010 4
  • Cannot find Closest topics and Stable topics

    Cannot find Closest topics and Stable topics

    Hello there, I am able to generate the model and visualize it. But when I tried to find the closest topics and stable topics, I get the error for code line:

    closest_topics, dist = btm.get_closest_topics(*matrix_topic_words, top_words=139, verbose=True)
    

    The error is:

    IndexError: too many indices for array: array is 1-dimensional, but 2 were indexed
    

    This is despite me separately checking the array size and it is 2-D. I am pasting the code below. Pl. can you check if I am doing anything wrong.

    Thank you.

    X, vocabulary, vocab_dict = btm.get_words_freqs(clean_text, max_df=.85, min_df=15,ngram_range=(1,2))
    
    # Vectorizing documents
    docs_vec = btm.get_vectorized_docs(clean_text, vocabulary)
    
    # Generating biterms
    Y = X.todense()
    biterms = btm.get_biterms(docs_vec, 15)
    
    # INITIALIZING AND RUNNING MODEL
    model = btm.BTM(X, vocabulary, T=8, M=10, alpha=500/1000, beta=0.01, win=15, has_background= True)
    model.fit(biterms, iterations=500, verbose=True)
    p_zd = model.transform(docs_vec,verbose=True)  
    print(p_zd) 
    
    # matrix of document-topics; topics vs. documents, topics vs. words probabilities 
    matrix_docs_topics = model.matrix_docs_topics_    #Documents vs topics probabilities matrix.
    topic_doc_matrix = model.matrix_topics_docs_      #Topics vs documents probabilities matrix.
    matrix_topic_words = model.matrix_topics_words_   #Topics vs words probabilities matrix.
    
    # Getting stable topics
    print("Array Dimension = ",len(matrix_topic_words.shape))
    closest_topics, dist = btm.get_closest_topics(*matrix_topic_words, top_words=100, verbose=True)
    stable_topics, stable_kl = btm.get_stable_topics(closest_topics, thres=0.7)
    
    # Stable topics indices list
    print(stable_topics)
    
    help wanted question 
    opened by RashmiBatra 4
  • Questions regarding Perplexity and Model Comparison with C++

    Questions regarding Perplexity and Model Comparison with C++

    I have two questions regarding this mode. First of all, I noticed that the evaluation metric perplexity was implemented. However, traditionally, the perplexity was mostly computed on the held-out dataset. Does that mean that when using this model, we should leave out certain proportion of the data and compute the perplexity on those samples that have not been used for training the model? My second question was that I was trying to compare this implementation with the C++ version from the original paper. The results (the top words in each topic) are quite different when the same parameters are used on the same corpus. Do you know what might be causing that and which part was implemented differently?

    help wanted question 
    opened by orpheus92 3
  • How do I get the topic words?

    How do I get the topic words?

    Hi,

    Firstly, thanks for sharing your code.

    Not an issue, just a question. I'm able to see the relevant words for a topic in the tmplot report. How do I get those words? I need to get at least the most three relevant terms.

    Thanks in advance.

    question 
    opened by aguinaldoabbj 3
  • failed building wheels

    failed building wheels

    Hi!

    I've got an error when running pip3 install bitermplus on MacOS (intel-based, Ventura), using python 3.10.8 in a separate venv (not anaconda):

    Building wheels for collected packages: bitermplus
      Building wheel for bitermplus (pyproject.toml) ... error
      error: subprocess-exited-with-error
    
      × Building wheel for bitermplus (pyproject.toml) did not run successfully.
      │ exit code: 1
      ╰─> [34 lines of output]
          Error in sitecustomize; set PYTHONVERBOSE for traceback:
          AssertionError:
          running bdist_wheel
          running build
          running build_py
          creating build
          creating build/lib.macosx-12-x86_64-cpython-310
          creating build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/__init__.py -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/_util.py -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          running egg_info
          writing src/bitermplus.egg-info/PKG-INFO
          writing dependency_links to src/bitermplus.egg-info/dependency_links.txt
          writing requirements to src/bitermplus.egg-info/requires.txt
          writing top-level names to src/bitermplus.egg-info/top_level.txt
          reading manifest file 'src/bitermplus.egg-info/SOURCES.txt'
          reading manifest template 'MANIFEST.in'
          adding license file 'LICENSE'
          writing manifest file 'src/bitermplus.egg-info/SOURCES.txt'
          copying src/bitermplus/_btm.c -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/_btm.pyx -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/_metrics.c -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          copying src/bitermplus/_metrics.pyx -> build/lib.macosx-12-x86_64-cpython-310/bitermplus
          running build_ext
          building 'bitermplus._btm' extension
          creating build/temp.macosx-12-x86_64-cpython-310
          creating build/temp.macosx-12-x86_64-cpython-310/src
          creating build/temp.macosx-12-x86_64-cpython-310/src/bitermplus
          clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX12.sdk -I/usr/local/opt/[email protected]/Frameworks/Python.framework/Versions/3.10/include/python3.10 -c src/bitermplus/_btm.c -o build/temp.macosx-12-x86_64-cpython-310/src/bitermplus/_btm.o -Xpreprocessor -fopenmp
          src/bitermplus/_btm.c:772:10: fatal error: 'omp.h' file not found
          #include <omp.h>
                   ^~~~~~~
          1 error generated.
          error: command '/usr/bin/clang' failed with exit code 1
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
      ERROR: Failed building wheel for bitermplus
    Failed to build bitermplus
    ERROR: Could not build wheels for bitermplus, which is required to install pyproject.toml-based projects
    

    Could this error be related to #29? I've tested on a PC and it worked though.

    bug documentation 
    opened by alanmaehara 2
  • Failed building wheel for bitermplus

    Failed building wheel for bitermplus

    Could not build wheels for bitermplus, which is required to install pyproject.toml-based projects

    When I try to install bitermplus with pip install bitermplus there is an error massage like this : note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for bitermplus ERROR: Could not build wheels for bitermplus, which is required to install pyproject.toml-based projects

    bug 
    opened by novra 2
  • Calculation of nmi,ami,ri

    Calculation of nmi,ami,ri

    I'm trying to test the model and see if it matches the data labels, but I can't get the topic for each document. I'm trying to get the list of labels to apply nmi, ami and ri so I'm wondering how to get the labels from the model. @maximtrp

    opened by gitassia 2
  • Implementation Guide

    Implementation Guide

    I was wondering is there any way to print the the topics generate by the BTM model, just like how I can do it with Gensim. In addition to that, I am getting all negative coherence values in the range of -500 or -600. I am not sure if I am doing something wrong. The issues is, I am not able to interpret the results, even plotting gives some strange output.

    image

    The following image show what is held by the variable adobe, again I am not sure if it needs to be in this manner or each row here needs to a list

    image
    opened by neel6762 2
Releases(v0.6.12)
Owner
Maksim Terpilowski
Research scientist
Maksim Terpilowski
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

BLEU Score Implementation for paper: BLEU: a Method for Automatic Evaluation of Machine Translation Author: Ba Ngoc from ProtonX BLEU score is a popul

Ngoc Nguyen Ba 6 Oct 07, 2021
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
Khandakar Muhtasim Ferdous Ruhan 1 Dec 30, 2021
Journalism AI – Quotes extraction for modular journalism

Quote extraction for modular journalism (JournalismAI collab 2021)

Journalism AI collab 2021 207 Dec 25, 2022
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Yixuan Su 26 Oct 17, 2022
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
تولید اسم های رندوم فینگیلیش

karafs کرفس تولید اسم های رندوم فینگیلیش installation ➜ pip install karafs usage دو زبانه ➜ karafs -n 10 توت فرنگی بی ناموس toot farangi-ye bi_namoos

Vaheed NÆINI (9E) 36 Nov 24, 2022
中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

English | 中文说明 CBLUE AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For fur

452 Dec 30, 2022
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022