FMA: A Dataset For Music Analysis

Overview

FMA: A Dataset For Music Analysis

Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson.
International Society for Music Information Retrieval Conference (ISMIR), 2017.

We introduce the Free Music Archive (FMA), an open and easily accessible dataset suitable for evaluating several tasks in MIR, a field concerned with browsing, searching, and organizing large music collections. The community's growing interest in feature and end-to-end learning is however restrained by the limited availability of large audio datasets. The FMA aims to overcome this hurdle by providing 917 GiB and 343 days of Creative Commons-licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a hierarchical taxonomy of 161 genres. It provides full-length and high-quality audio, pre-computed features, together with track- and user-level metadata, tags, and free-form text such as biographies. We here describe the dataset and how it was created, propose a train/validation/test split and three subsets, discuss some suitable MIR tasks, and evaluate some baselines for genre recognition. Code, data, and usage examples are available at https://github.com/mdeff/fma.

Data

All metadata and features for all tracks are distributed in fma_metadata.zip (342 MiB). The below tables can be used with pandas or any other data analysis tool. See the paper or the usage.ipynb notebook for a description.

  • tracks.csv: per track metadata such as ID, title, artist, genres, tags and play counts, for all 106,574 tracks.
  • genres.csv: all 163 genres with name and parent (used to infer the genre hierarchy and top-level genres).
  • features.csv: common features extracted with librosa.
  • echonest.csv: audio features provided by Echonest (now Spotify) for a subset of 13,129 tracks.

Then, you got various sizes of MP3-encoded audio data:

  1. fma_small.zip: 8,000 tracks of 30s, 8 balanced genres (GTZAN-like) (7.2 GiB)
  2. fma_medium.zip: 25,000 tracks of 30s, 16 unbalanced genres (22 GiB)
  3. fma_large.zip: 106,574 tracks of 30s, 161 unbalanced genres (93 GiB)
  4. fma_full.zip: 106,574 untrimmed tracks, 161 unbalanced genres (879 GiB)

See the wiki (or #41) for known issues (errata).

Code

The following notebooks, scripts, and modules have been developed for the dataset.

  1. usage.ipynb: shows how to load the datasets and develop, train, and test your own models with it.
  2. analysis.ipynb: exploration of the metadata, data, and features. Creates the figures used in the paper.
  3. baselines.ipynb: baseline models for genre recognition, both from audio and features.
  4. features.py: features extraction from the audio (used to create features.csv).
  5. webapi.ipynb: query the web API of the FMA. Can be used to update the dataset.
  6. creation.ipynb: creation of the dataset (used to create tracks.csv and genres.csv).
  7. creation.py: creation of the dataset (long-running data collection and processing).
  8. utils.py: helper functions and classes.

Usage

Binder   Click the binder badge to play with the code and data from your browser without installing anything.

  1. Clone the repository.

    git clone https://github.com/mdeff/fma.git
    cd fma
  2. Create a Python 3.6 environment.
    # with https://conda.io
    conda create -n fma python=3.6
    conda activate fma
    
    # with https://github.com/pyenv/pyenv
    pyenv install 3.6.0
    pyenv virtualenv 3.6.0 fma
    pyenv activate fma
    
    # with https://pipenv.pypa.io
    pipenv --python 3.6
    pipenv shell
    
    # with https://docs.python.org/3/tutorial/venv.html
    python3.6 -m venv ./env
    source ./env/bin/activate
  3. Install dependencies.

    pip install --upgrade pip setuptools wheel
    pip install numpy==1.12.1  # workaround resampy's bogus setup.py
    pip install -r requirements.txt

    Note: you may need to install ffmpeg or graphviz depending on your usage.
    Note: install CUDA to train neural networks on GPUs (see Tensorflow's instructions).

  4. Download some data, verify its integrity, and uncompress the archives.

    cd data
    
    curl -O https://os.unil.cloud.switch.ch/fma/fma_metadata.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_small.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_medium.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_large.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_full.zip
    
    echo "f0df49ffe5f2a6008d7dc83c6915b31835dfe733  fma_metadata.zip" | sha1sum -c -
    echo "ade154f733639d52e35e32f5593efe5be76c6d70  fma_small.zip"    | sha1sum -c -
    echo "c67b69ea232021025fca9231fc1c7c1a063ab50b  fma_medium.zip"   | sha1sum -c -
    echo "497109f4dd721066b5ce5e5f250ec604dc78939e  fma_large.zip"    | sha1sum -c -
    echo "0f0ace23fbe9ba30ecb7e95f763e435ea802b8ab  fma_full.zip"     | sha1sum -c -
    
    unzip fma_metadata.zip
    unzip fma_small.zip
    unzip fma_medium.zip
    unzip fma_large.zip
    unzip fma_full.zip
    
    cd ..

    Note: try 7zip if decompression errors. It might be an unsupported compression issue.

  5. Fill a .env configuration file (at repository's root) with the following content.

    AUDIO_DIR=./data/fma_small/  # the path to a decompressed fma_*.zip
    FMA_KEY=MYKEY  # only if you want to query the freemusicarchive.org API
    
  6. Open Jupyter or run a notebook.

    jupyter notebook
    make usage.ipynb

Impact, coverage, and resources

100+ research papers

Full list on Google Scholar. Some picks below.

2 derived works
~10 posts
5 events
~10 dataset lists

Contributing

Contribute by opening an issue or a pull request. Let this repository be a hub around the dataset!

History

2017-05-09 pre-publication release

  • paper: arXiv:1612.01840v2
  • code: git tag rc1
  • fma_metadata.zip sha1: f0df49ffe5f2a6008d7dc83c6915b31835dfe733
  • fma_small.zip sha1: ade154f733639d52e35e32f5593efe5be76c6d70
  • fma_medium.zip sha1: c67b69ea232021025fca9231fc1c7c1a063ab50b
  • fma_large.zip sha1: 497109f4dd721066b5ce5e5f250ec604dc78939e
  • fma_full.zip sha1: 0f0ace23fbe9ba30ecb7e95f763e435ea802b8ab
  • known issues: see #41

2016-12-06 beta release

  • paper: arXiv:1612.01840v1
  • code: git tag beta
  • fma_small.zip sha1: e731a5d56a5625f7b7f770923ee32922374e2cbf
  • fma_medium.zip sha1: fe23d6f2a400821ed1271ded6bcd530b7a8ea551

Acknowledgments and Licenses

We are grateful to the Swiss Data Science Center (EPFL and ETHZ) for hosting the dataset.

Please cite our work if you use our code or data.

@inproceedings{fma_dataset,
  title = {{FMA}: A Dataset for Music Analysis},
  author = {Defferrard, Micha\"el and Benzi, Kirell and Vandergheynst, Pierre and Bresson, Xavier},
  booktitle = {18th International Society for Music Information Retrieval Conference (ISMIR)},
  year = {2017},
  archiveprefix = {arXiv},
  eprint = {1612.01840},
  url = {https://arxiv.org/abs/1612.01840},
}
@inproceedings{fma_challenge,
  title = {Learning to Recognize Musical Genre from Audio},
  subtitle = {Challenge Overview},
  author = {Defferrard, Micha\"el and Mohanty, Sharada P. and Carroll, Sean F. and Salath\'e, Marcel},
  booktitle = {The 2018 Web Conference Companion},
  year = {2018},
  publisher = {ACM Press},
  isbn = {9781450356404},
  doi = {10.1145/3184558.3192310},
  archiveprefix = {arXiv},
  eprint = {1803.05337},
  url = {https://arxiv.org/abs/1803.05337},
}
Owner
Michaël Defferrard
Research on machine learning and graphs. Open science, source, data.
Michaël Defferrard
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022