Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Related tags

Deep LearningGRCN
Overview

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

This is our Pytorch implementation for the paper:

Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He and Tat-Seng Chua. Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback. In ACM MM`20, Seattle, United States, Oct. 12-16, 2020
Author: Dr. Yinwei Wei (weiyinwei at hotmail.com)

Introduction

In this work, we focus on adaptively refining the structure of interaction graph to discover and prune potential false-positive edges. Towards this end, we devise a new GCN-based recommendermodel, Graph-Refined Convolutional Network(GRCN), which adjusts the structure of interaction graph adaptively based on status of mode training, instead of remaining the fixed structure.

Environment Requirement

The code has been tested running under Python 3.5.2. The required packages are as follows:

  • Pytorch == 1.4.0
  • torch-cluster == 1.4.2
  • torch-geometric == 1.2.1
  • torch-scatter == 1.2.0
  • torch-sparse == 0.4.0
  • numpy == 1.16.0

Example to Run the Codes

The instruction of commands has been clearly stated in the codes.

  • Kwai dataset
    python main.py --l_r=0.0001 --weight_decay=0.1 --dropout=0 --weight_mode=confid --num_routing=3 --is_pruning=False --data_path=Kwai --has_a=False --has_t=False
  • Tiktok dataset
    python main.py --l_r=0.0001 --weight_decay=0.001 --dropout=0 --weight_mode=confid --num_routing=3 --is_pruning=False --data_path=Tiktok
  • Movielens dataset
    python main.py --l_r=0.0001 --weight_decay=0.0001 --dropout=0 --weight_mode=confid --num_routing=3 --is_pruning=False

Some important arguments:

  • weight_model It specifics the type of multimodal correlation integration. Here we provide three options:

    1. mean implements the mean integration without confidence vectors. Usage --weight_model 'mean'
    2. max implements the max integration without confidence vectors. Usage --weight_model 'max'
    3. confid (by default) implements the max integration with confidence vectors. Usage --weight_model 'confid'
  • fusion_mode It specifics the type of user and item representation in the prediction layer. Here we provide three options:

    1. concat (by default) implements the concatenation of multimodal features. Usage --fusion_mode 'concat'
    2. mean implements the mean pooling of multimodal features. Usage --fusion_mode 'max'
    3. id implements the representation with only the id embeddings. Usage --fusion_mode 'id'
  • is_pruning It specifics the type of pruning operation. Here we provide three options:

    1. Ture (by default) implements the hard pruning operations. Usage --is_pruning 'True'
    2. False implements the soft pruning operations. Usage --is_pruning 'False'
  • 'has_v', 'has_a', and 'has_t' indicate the modality used in the model.

Dataset

Please check MMGCN for the datasets: Kwai, Tiktok, and Movielens.

Due to the copyright, we could only provide some toy datasets for validation. If you need the complete ones, please contact the owners of the datasets.

#Interactions #Users #Items Visual Acoustic Textual
Movielens 1,239,508 55,485 5,986 2,048 128 100
Tiktok 726,065 36,656 76,085 128 128 128
Kwai 298,492 86,483 7,010 2,048 - -

-train.npy Train file. Each line is a user with her/his positive interactions with items: (userID and micro-video ID)
-val.npy Validation file. Each line is a user with her/his several positive interactions with items: (userID and micro-video ID)
-test.npy Test file. Each line is a user with her/his several positive interactions with items: (userID and micro-video ID)

Owner
Thank you for your attention. If you have any questions, please email me.
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
Official implementation of Pixel-Level Bijective Matching for Video Object Segmentation

BMVOS This is the official implementation of Pixel-Level Bijective Matching for Video Object Segmentation, to appear in WACV 2022. @article{cho2021pix

Suhwan Cho 13 Dec 14, 2022
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021