A large-image collection explorer and fast classification tool

Related tags

Deep Learningimax
Overview

IMAX: Interactive Multi-image Analysis eXplorer

This is an interactive tool for visualize and classify multiple images at a time. It written in Python and Javascript. It is based on Leaflet and it reads the images from a single directory and there is no need for multiple resolutions folders as images are scaled dynamically when zooming in/out. It runs an asyncio server in the back end and supports up 10,000 images reasonable well. It can load more images but it will slower. It runs using multiple cores and has been tested with over 50K images.

You can move and label images all from the keyboard.

You can see a (not very good) gif demo ot the tool in action, a live demo or a better video is here

Demo

Deployment

Simple deployment

Clone this repository:

	git clone https://github.com/mgckind/imax.git
	cd imax/python_server

Create a config file template:

	cp config_template.yaml config.yaml

Edit the config.yaml file to have the correct parameters, see Configuration for more info.

Start the server:

   python3 server.py

Start the client and visit the url printed python_server:

   python3 client.py

If you are running locally you can go to http://localhost:8000/

Docker

  1. Create image from Dockerfile

     cd imax
     docker build -t imax .
    
  2. Create an internal network so server/client can talk through the internal network (is not need for now as we are exposing both services at the localhost)

     docker network create --driver bridge imaxnet
    
  3. Create local config file to be mounted inside the containers. Create config.yaml based on the template, and replace the image location.

  4. Start the server container and attach the volume with images, connect to network and expose port 8888 to localhost

        docker run -d --name server -p 8888:8888 -v {PATH TO CONFIG FILE}:/home/explorer/server/config.yaml -v {PATH TO LOCAL IMAGES}:{PATH TO CONTAINER IMAGES} --network imaxnet imax python server.py
    
  5. Start the client container, connect to network and expose the port 8000 to local host

        docker run -d --name client -p 8000:8000 -v {PATH TO CONFIG FILE}:/home/explorer/server/config.yaml  --network imaxnet imax python client.py
    

Now the containers can talk at the localhost. If you are running locally you can go to http://localhost:8000/

Usage

This is the Help window displayed


Help


-> Fullscreen
-> Invert colors
/ -> Toggle On/Off classified tiles.
First time it reads from DB.

-> Random. Show a new random subsample (if available data is larger)
-> Apply filter to the displayed data.
Use the checkboxes on the left bottom side. -1 means no classified.
-> Reset filters and view. Do not display deleted images.

Move around with mouse and keyboard , use the mouse wheel to zoom in/out and double click to focus on one image.

Keyboard

Use "w","a","s","d" to move the selected tile and the keyboard numbers to apply a class as defined in the configuration file
Use "+", "-" to zoom in/out
Use "c" to clear any class selection
Use "t" to toggle on/off the classes
Use "h" to toggle on/off the Help
Use "f" to toggle on/off Full screen
Defined classes will appear at the bottom right side of the map

Configuration

This is the template config file to use:

#### DISPLAY
display:
  dataname: '{FILL ME}' #Name for the sqlite DB and config file
  path: '{FILL ME}'
  nimages: 1200 #Number of objects to be displayed even if there are more in the folder
  xdim: 40 #X dimension for the display
  ydim: 30 #Y dimension for the display
  tileSize: 256 #Size of the tile for which images are resized at max zoom level
  minXrange: 0
  minYrange: 0
  deltaZoom: 3 #default == 3
#### SERVER
server:
  ssl: false #use ssl, need to have certificates
  sslName: test #prefix of .crt and .key files inside ssl/ folder e.g., ssl/{sslName.key}
  host: 'http://localhost' #if using ssl, change to https
  port: 8888
  rootUrl: '/cexp' #root url for server, e.g. request are made to /cexp/, if None use "/"
  #workers: None # None will default to the workers in the machine
#### CLIENT
client:
  host: 'http://localhost'
  port: 8000
#### OPERATIONS options
operation:
  updates: true #allows to update and/or remove classes to images, false and classes are fixed.
#### CLASSES
#### classes, use any classes from 0 to 9, class 0 is for hidden! class -1 is no class
classes:
    - Delete: 0
    - Spiral: 8
    - Elliptical: 9
    - Other: 7
Owner
Matias Carrasco Kind
Data Science Research Services @giesdsrs director at UIUC. Astrophysicist and former Senior Research Scientist at @ncsa
Matias Carrasco Kind
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022