Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Overview

Knowledge Informed Machine Learning using a Weibull-based Loss Function

Exploring the concept of knowledge-informed machine learning with the use of a Weibull-based loss function. Used to predict remaining useful life (RUL) on the IMS and PRONOSTIA (also called FEMTO) bearing data sets.

Open In Colab Source code arXiv

Knowledge-informed machine learning is used on the IMS and PRONOSTIA bearing data sets for remaining useful life (RUL) prediction. The knowledge is integrated into a neural network through a novel Weibull-based loss function. A thorough statistical analysis of the Weibull-based loss function is conducted, demonstrating the effectiveness of the method on the PRONOSTIA data set. However, the Weibull-based loss function is less effective on the IMS data set.

The experiment will be detailed in the Journal of Prognostics and Health Management (accepted and pending publication -- preprint here), with an extensive discussion on the results, shortcomings, and benefits analysis. The paper also gives an overview of knowledge informed machine learning as it applies to prognostics and health management (PHM).

You can replicate the work, and all figures, by following the instructions in the Setup section. Even easier: run the Colab notebook!

If you have any questions, leave a comment in the discussion, or email me ([email protected]).

Summary

In this work, we use the definition of knowledge informed machine learning from von Rueden et al. (their excellent paper is here). Here's the general taxonomy of our knowledge informed machine learning experiment:

source_rep_int

Bearing vibration data (from the frequency domain) was used as input to feed-forward neural networks. The below figure demonstrates the data as a spectrogram (a) and the spectrogram after "binning" (b). The binned data was used as input.

spectrogram

A large hyper-parameter search was conducted on neural networks. Nine different Weibull-based loss functions were tested on each unique network.

The below chart is a qualitative method of showing the effectiveness of the Weibull-based loss functions on the two data sets.

loss function percentage

We also conducted a statistical analysis of the results, as shown below.

correlation of the weibull-based loss function to results

The top performing models' RUL trends are shown below, for both the IMS and PRONOSTIA data sets.

IMS RUL  trend
PRONOSTIA RUL  trend

Setup

Tested in linux (MacOS should also work). If you run windows you'll have to do much of the environment setup and data download/preprocessing manually.

To reproduce results:

  1. Clone this repo - clone https://github.com/tvhahn/weibull-knowledge-informed-ml.git

  2. Create virtual environment. Assumes that Conda is installed.

    • Linux/MacOS: use command from the Makefile in the root directory - make create_environment
    • Windows: from root directory - conda env create -f envweibull.yml
    • HPC: make create_environment will detect HPC environment and automatically create environment from make_hpc_venv.sh. Tested on Compute Canada. Modify make_hpc_venv.sh for your own HPC cluster.
  3. Download raw data.

    • Linux/MacOS: use make download. Will automatically download to appropriate data/raw directory.
    • Windows: Manually download the the IMS and PRONOSTIA (FEMTO) data sets from NASA prognostics data repository. Put in data/raw folder.
    • HPC: use make download. Will automatically detect HPC environment.
  4. Extract raw data.

    • Linux/MacOS: use make extract. Will automatically extract to appropriate data/raw directory.
    • Windows: Manually extract data. See the Project Organization section for folder structure.
    • HPC: use make download. Will automatically detect HPC environment. Again, modify for your HPC cluster.
  5. Ensure virtual environment is activated. conda activate weibull or source ~/weibull/bin/activate

  6. From root directory of weibull-knowledge-informed-ml, run pip install -e . -- this will give the python scripts access to the src folders.

  7. Train!

    • Linux/MacOS: use make train_ims or make train_femto. Note: set constants in the makefile for changing random search parameters. Currently set as default.

    • Windows: run manually by calling the script - python train_ims or python train_femto with the appropriate arguments. For example: src/models/train_models.py --data_set femto --path_data your_data_path --proj_dir your_project_directory_path

    • HPC: use make train_ims or make train_femto. The HPC environment should be automatically detected. A SLURM script will be run for a batch job.

      • Modify the train_modify_ims_hpc.sh or train_model_femto_hpc.sh in the src/models directory to meet the needs of your HPC cluster. This should work on Compute Canada out of the box.
  8. Filter out the poorly performing models and collate the results. This will create several results files in the models/final folder.

    • Linux/MacOS: use make summarize_ims_models or make summarize_femto_models. (note: set filter boundaries in summarize_model_results.py. Will eventually modify for use with Argparse...)
    • Windows: run manually by calling the script.
    • HPC: use make summarize_ims_models or make summarize_femto_models. Again, change filter requirements in the summarize_model_results.py script.
  9. Make the figures of the data and results.

    • Linux/MacOS: use make figures_data and make figures_results. Figures will be generated and placed in the reports/figures folder.
    • Windows: run manually by calling the script.
    • HPC: use make figures_data and make figures_results

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands to reproduce work, lik `make data` or `make train_ims`
├── README.md          <- The top-level README.
├── data
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump. Downloaded from the NASA Prognostic repository.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details (nothing in here yet)
│
├── models             <- Trained models, model predictions, and model summaries
│   ├── interim        <- Intermediate models that have not analyzed. Output from the random search.
│   ├── final          <- Final models that have been filtered and summarized. Several outpu csv files as well.
│
├── notebooks          <- Jupyter notebooks used for data exploration and analysis. Of varying quality.
│   ├── scratch        <- Scratch notebooks for quick experimentation.     
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials (empty).
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── envweibull.yml    <- The Conda environment file for reproducing the analysis environment
│                        recommend using Conda).
│
├── make_hpc_venv.sh  <- Bash script to create the HPC venv. Setup for my Compute Canada cluster.
│                        Modify to suit your own HPC cluster.
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models               
│   │   └── predict_model.py
│   │
│   └── visualization  <- Scripts to create figures of the data, results, and training progress
│       ├── visualize_data.py       
│       ├── visualize_results.py     
│       └── visualize_training.py    

Future List

As noted in the paper, the best thing would be to test out Weibull-based loss functions on large, and real-world, industrial datasets. Suitable applications may include large fleets of pumps or gas turbines.

Owner
Tim
Data science. Innovation. ML practitioner.
Tim
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022