A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

Overview

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

Datasets

Because of copyright issues, both the MalwareBazaar dataset and the MalwareDrift dataset just contain the malware SHA-256 hash and all of the related information which can be find in the Datasets folder. You can download raw malware samples from the open-source malware release website by applying an api-key, and use disassembly tool to convert the malware into binary and disassembly files.

  • The MalwareBazaar dataset : you can download the samples from MalwareBazaar.
  • The MalwareDrift dataset : you can download the samples from VirusShare.

Experimental Settings

Model Training Strategy Optimizer Learning Rate Batch Size Input Format
ResNet-50 From Scratch Adam 1e-3 64 224*224 color image
ResNet-50 Transfer Adam 1e-3 All data* 224*224 color image
VGG-16 From Scratch SGD 5e-6** 64 224*224 color image
VGG-16 Transfer SGD 5e-6 64 224*224 color image
Inception-V3 From Scratch Adam 1e-3 64 224*224 color image
Inception-V3 Transfer Adam 1e-3 All data 224*224 color image
IMCFN From Scratch SGD 5e-6*** 32 224*224 color image
IMCFN Transfer SGD 5e-6*** 32 224*224 color image
CBOW+MLP - SGD 1e-3 128 CBOW: byte sequences; MLP: 256*256 matrix
MalConv - SGD 1e-3 32 2MB raw byte values
MAGIC - Adam 1e-4 10 ACFG
Word2Vec+KNN - - - - Word2Vec: Opcode sequences; KNN distance measure: WMD
MCSC - SGD 5e-3 64 Opcode sequences

* The batch size is set to 128 for the MalwareBazaar dataset
** The learning rate is set to 5e-5 for the Malimg dataset and 1e-5 for the MalwareBazaar dataset
*** The learning rate is set to 1e-5 for the MalwareBazaar dataset
CBOW is with default parameters in the Word2Vec package in the Gensim library of Python

Graphically Analysis of Table 4 and Table 5

Here is a more detailed figure analysis for Table 4 and Table 5 in order to make the raw information in the paper easier to digest.

Table 4

  • The classification performance (F1-Score) of each approach on three datasets classification performance

    The figure shows the classification performance (F1-Score) of each methods on three datasets. It is noteworthy that the Malimg dataset only contains malware images, and thus it can only be used to evaluate the 4 image-based methods.

  • The average classification performance (F1-Score) of each approach for three datasets average classification performance

    The figure shows the average classification performance (F1-Score) of each method for the three datasets. Among them, the F1-score corresponding to each model is obtained by averaging the F1-score of the model on three datasets, which represents the average performance.

  • The train time and resource overhead of each method on three datasets
    resource consumption

    The figure shows the train time (left subgraph) and resource overhead (right subgraph) needed for every method on three datasets. The bar immediately to the right of the train time bar is the memory overhead of this model. Similarly, there are only 4 image-based models for the Malimg dataset.

Table 5

  • The classification performance (F1-Score) of transfer learning for image-based approaches on three datasets transfer learning

    This figure shows the F1-Score obtained by every image-based model using the strategy of training from scratch, 10% transfer learning, 50% transfer learning, 80% transfer learning, and 100% transfer learning, respectively. Every subgraph correspond to the BIG-15, Malimg, and MalwareBazaar dataset, respectively.

  • The train time and resource overhead of transfer learning for image-based approaches on three datasets
    resource consumption

    Each row correspond to the BIG-15, Mmalimg, and MalwareBazaar dataset, respectively. For each row, there are 4 models (ResNet-50, VGG-16, Inception-V3 and IMCFN). For each model, there are 8 bars on the right, the left 4 bars stands for the train time under 10%, 50%, 80% and 100% transfer learning, and the right 4 bars are the memory overhead under 10%, 50%, 80% and 100% transfer learning.

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022