BankNote-Net: Open dataset and encoder model for assistive currency recognition

Overview

BankNote-Net: Open Dataset for Assistive Currency Recognition

Millions of people around the world have low or no vision. Assistive software applications have been developed for a variety of day-to-day tasks, including currency recognition. To aid with this task, we present BankNote-Net, an open dataset for assistive currency recognition. The dataset consists of a total of 24,816 embeddings of banknote images captured in a variety of assistive scenarios, spanning 17 currencies and 112 denominations. These compliant embeddings were learned using supervised contrastive learning and a MobileNetV2 architecture, and they can be used to train and test specialized downstream models for any currency, including those not covered by our dataset or for which only a few real images per denomination are available (few-shot learning). We deploy a variation of this model for public use in the last version of the Seeing AI app developed by Microsoft, which has over a 100 thousand monthly active users.

If you make use of this dataset or pre-trained model in your own project, please consider referencing this GitHub repository and citing our paper:

@article{oviedoBankNote-Net2022,
  title   = {BankNote-Net: Open Dataset for Assistive Currency Recognition},
  author  = {Felipe Oviedo, Srinivas Vinnakota, Eugene Seleznev, Hemant Malhotra, Saqib Shaikh & Juan Lavista Ferres},
  journal = {https://arxiv.org/pdf/2204.03738.pdf},
  year    = {2022},
}

Data Structure

The dataset data structure consists of 256-dimensional vector embeddings with additional columns for currency, denomination and face labels, as explained in the data exploration notebook. The dataset is saved as 24,826 x 258 flat table in feather and csv file formats. Figure 1 presents some of these learned embeddings.

Figure 1: t-SNE representations of the BankNote-Net embeddings for a few selected currencies.

Setup and Dataset Usage

  1. Install requirements.

    Please, use the conda environment file env.yaml to install the right dependencies.

    # Create conda environment
    conda create env -f env.yaml
    
    # Activate environment to run examples
    conda activate banknote_net
    
  2. Example 1: Train a shallow classifier directly from the dataset embeddings for a currency available in the dataset. For inference, images should be encoded first using the keras MobileNet V2 pre-trained encoder model.

    Run the following file from root: train_from_embedding.py

    python src/train_from_embedding.py --currency AUD --bsize 128 --epochs 25 --dpath ./data/banknote_net.feather
    
      usage: train_from_embedding.py [-h] --currency
                                  {AUD,BRL,CAD,EUR,GBP,INR,JPY,MXN,PKR,SGD,TRY,USD,NZD,NNR,MYR,IDR,PHP}
                                  [--bsize BSIZE] [--epochs EPOCHS]
                                  [--dpath DPATH]
    
      Train model from embeddings.
    
      optional arguments:
      -h, --help            show this help message and exit
      --currency {AUD,BRL,CAD,EUR,GBP,INR,JPY,MXN,PKR,SGD,TRY,USD,NZD,NNR,MYR,IDR,PHP}, --c {AUD,BRL,CAD,EUR,GBP,INR,JPY,MXN,PKR,SGD,TRY,USD,NZD,NNR,MYR,IDR,PHP}
                              String of currency for which to train shallow
                              classifier
      --bsize BSIZE, --b BSIZE
                              Batch size for shallow classifier
      --epochs EPOCHS, --e EPOCHS
                              Number of epochs for training shallow top classifier
      --dpath DPATH, --d DPATH
                              Path to .feather BankNote Net embeddings
                          
    
  3. Example 2: Train a classifier on top of the BankNote-Net pre-trained encoder model using images in a custom directory. Input images must be of size 224 x 224 pixels and have square aspect ratio. For this example, we use a couple dozen images spanning 8 classes for Swedish Krona, structured as in the example_images/SEK directory, that contains both training and validation images.

    Run the following file from root: train_custom.py

    python src/train_custom.py --bsize 4 --epochs 25 --data_path ./data/example_images/SEK/ --enc_path ./models/banknote_net_encoder.h5
    
    usage: train_custom.py [-h] [--bsize BSIZE] [--epochs EPOCHS]
                      [--data_path DATA_PATH] [--enc_path ENC_PATH]
    
    Train model from custom image folder using pre-trained BankNote-Net encoder.
    
    optional arguments:
    -h, --help            show this help message and exit
    --bsize BSIZE, --b BSIZE
                          Batch size
    --epochs EPOCHS, --e EPOCHS
                          Number of epochs for training shallow top classifier.
    --data_path DATA_PATH, --data DATA_PATH
                          Path to folder with images.
    --enc_path ENC_PATH, --enc ENC_PATH
                          Path to .h5 file of pre-trained encoder model.                       
    
  4. Example 3: Perform inference using the SEK few-shot classifier of Example 2, and the validation images on example_images/SEK/val

    Run the following file from root: predict_custom.py, returns encoded predictions.

      python src/predict_custom.py --bsize 1 --data_path ./data/example_images/SEK/val/ --model_path ./src/trained_models/custom_classifier.h5
    
      usage: predict_custom.py [-h] [--bsize BSIZE] [--data_path DATA_PATH]
                              [--model_path MODEL_PATH]
    
      Perform inference using trained custom classifier.
    
      optional arguments:
      -h, --help            show this help message and exit
      --bsize BSIZE, --b BSIZE
                              Batch size
      --data_path DATA_PATH, --data DATA_PATH
                              Path to custom folder with validation images.
      --model_path MODEL_PATH, --enc MODEL_PATH
                              Path to .h5 file of trained classification model.                           
    

License for Dataset and Model

Copyright (c) Microsoft Corporation. All rights reserved.

The dataset is open for anyone to use under the CDLA-Permissive-2.0 license. The embeddings should not be used to reconstruct high resolution banknote images.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022