Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Overview

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Setting up a python environment

  • Follow the instruction in https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html for downloading and installing Miniconda

  • Open a terminal in the code directory

  • Create an environment using the .yml file:

    conda env create -f deepsatmodels_env.yml

  • Activate the environment:

    source activate deepsatmodels

  • Install required version of torch:

    conda install pytorch torchvision torchaudio cudatoolkit=10.1 -c pytorch-nightly

Datasets

MTLCC dataset (Germany)

Download the dataset (.tfrecords)

The data for Germany can be downloaded from: https://github.com/TUM-LMF/MTLCC

  • clone the repository in a separate directory:

    git clone https://github.com/TUM-LMF/MTLCC

  • move to the MTLCC root directory:

    cd MTLCC

  • download the data (40 Gb):

    bash download.sh full

Transform the dataset (.tfrecords -> .pkl)

  • go to the "CSCL_code" home directory:

    cd <.../CSCL_code>

  • activate the "cssl" python environment:

    conda activate cscl

  • add "CSCL_code" home directory to PYTHONPATH:

    export PYTHONPATH="<.../CSCL_code>:$PYTHONPATH"

  • Run the "data/MTLCC/make_pkl_dataset.py" script. Parameter numworkers defines the number of parallel processes employed:

    python data/MTLCC/make_pkl_dataset.py --rootdir <.../MTLCC> --numworkers

  • Running the above script will have the following effects:

    • will create a paths file for the tfrecords files in ".../MTLCC/data_IJGI18/datasets/full/tfrecords240_paths.csv"
    • will create a new directory to save data ".../MTLCC/data_IJGI18/datasets/full/240pkl"
    • will save data in ".../MTLCC/data_IJGI18/datasets/full/240pkl/ "
    • will save relative paths for all data, train data, eval data in ".../MTLCC/data_IJGI18/datasets/full/240pkl"

T31TFM_1618 dataset (France)

Download the dataset

The T31TFM_1618 dataset can be downloaded from Google drive here. Unzipping will create the following folder tree.

T31TFM_1618
├── 2016
│   ├── pkl_timeseries
│       ├── W799943_N6568107_E827372_S6540681
│       |   └── 6541426_800224_2016.pickle
|       |   └── ...
|       ├── ...
├── 2017
│   ├── pkl_timeseries
│       ├── W854602_N6650582_E882428_S6622759
│       |   └── 6623702_854602_2017.pickle
|       |   └── ...
|       ├── ...
├── 2018
│   ├── pkl_timeseries
│       ├── W882228_N6595532_E909657_S6568107
│       |   └── 6568846_888751_2018.pickle
|       |   └── ...
|       ├── ...
├── deepsatdata
|   └── T31TFM_16_products.csv
|   └── ...
|   └── T31TFM_16_parcels.csv
|   └── ...
└── paths
    └── train_paths.csv
    └── eval_paths.csv

Recreate the dataset from scratch

To recreate the dataset use the DeepSatData data generation pipeline.

  • Clone and move to the DeepSatData base directory
git clone https://github.com/michaeltrs/DeepSatData
cd .../DeepSatData
  • Download the Sentinel-2 products.
sh download/download.sh .../T31TFM_16_parcels.csv,.../T31TFM_17_parcels.csv,.../T31TFM_18_parcels.csv
  • Generate a labelled dataset (use case 1) for each year.
sh dataset/labelled_dense/make_labelled_dataset.sh ground_truths_file=<1:ground_truths_file> products_dir=<2:products_dir> labels_dir=<3:labels_dir> windows_dir=<4:windows_dir> timeseries_dir=<5:timeseries_dir> 
res=<6:res> sample_size=<7:sample_size> num_processes<8:num_processes> bands=<8:bands (optional)>

Experiments

Initial steps

  • Add the base directory and paths to train and evaluation path files in "data/datasets.yaml".

  • For each experiment we use a separate ".yaml" configuration file. Examples files are providedided in "configs". The default values filled in these files correspond to parameters used in the experiments presented in the paper.

  • activate "deepsatmodels" python environment:

    conda activate deepsatmodels

Model training

Modify respective .yaml config files accordingly to define the save directory or loading a pre-trained model from pre-trained checkpoints.

Randomly initialized "UNet3D" model

`python train_and_eval/segmentation_training.py --config_file configs/**/UNet3D.yaml --gpu_ids 0,1`

Randomly initialized "UNet2D-CLSTM" model

`python train_and_eval/segmentation_training.py --config_file configs/**/UNet2D_CLSTM.yaml --gpu_ids 0,1`

CSCL-pretrained "UNet2D-CLSTM" model

  • model pre-training

     python train_and_eval/segmentation_cscl_training.py --config_file configs/**/UNet2D_CLSTM_CSCL.yaml --gpu_ids 0,1
  • copy the path to the pre-training save directory in CHECKPOINT.load_from_checkpoint. This will load the latest saved model. To load a specific checkpoint copy the path to the .pth file

     python train_and_eval/segmentation_training.py --config_file configs/**/UNet2D_CLSTM.yaml --gpu_ids 0,1

Randomly initialized "UNet3Df" model

`python train_and_eval/segmentation_training.py --config_file configs/**/UNet3Df.yaml --gpu_ids 0,1`

CSCL-pretrained "UNet3Df" model

  • model pre-training

     python train_and_eval/segmentation_cscl_training.py --config_file configs/**/UNet3Df_CSCL.yaml --gpu_ids 0,1
  • copy the path to the pre-training save directory in CHECKPOINT.load_from_checkpoint. This will load the latest saved model. To load a specific checkpoint copy the path to the .pth file

     python train_and_eval/segmentation_training.py --config_file configs/**/UNet3Df.yaml --gpu_ids 0,1
Owner
Michael Tarasiou
Michael Tarasiou
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022