Meta Representation Transformation for Low-resource Cross-lingual Learning

Related tags

Deep LearningMetaXL
Overview

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning

This repo hosts the code for MetaXL, published at NAACL 2021.

[MetaXL: Meta Representation Transformation for Low- resource Cross-lingual Learning] (https://arxiv.org/pdf/2104.07908.pdf)

Mengzhou Xia, Guoqing Zheng, Subhabrata Mukherjee, Milad Shokouhi, Graham Neubig, Ahmed Hassan Awadallah

NAACL 2021

MetaXL is a meta-learning framework that learns a main model and a relatively small structure, called representation transformation network (RTN) through a bi-level optimization procedure with the goal to transform representations from auxiliary languages such that it benefits the target task the most.

Data

Please download [WikiAnn] (https://github.com/afshinrahimi/mmner), [MARC] (https://registry.opendata.aws/amazon-reviews-ml/), [SentiPers] (https://github.com/phosseini/sentipers) and [Sentiraama] (https://ltrc.iiit.ac.in/showfile.php?filename=downloads/sentiraama/) on its corresponding. Please refer to data/data_index.txt for data splits.

Scripts

The following script shows how to run metaxl on the named entity recognition task on Quechua.

python3 mtrain.py \
      --data_dir data_dir \
      --bert_model xlm-roberta-base \
      --tgt_lang qa \
      --task_name panx \
      --train_max_seq_length 200 \
      --max_seq_length 512 \
      --epochs 20 \
      --batch_size 10 \
      --method metaxl \
      --output_dir output_dir \
      --warmup_proportion 0.1 \
      --main_lr 3e-05 \
      --meta_lr 1e-06 \
      --train_size 1000\
      --target_train_size 100 \
      --source_languages en \
      --source_language_strategy specified \
      --layers 12 \
      --struct perceptron \
      --tied  \
      --transfer_component_add_weights \
      --tokenizer_dir None \
      --bert_model_type ori \
      --bottle_size 192 \
      --portion 2 \
      --data_seed 42  \
      --seed 11 \
      --do_train  \
      --do_eval 

The following script shows how to run metaxl on the sentiment analysis task on fa.

python3 mtrain.py  \
		--data_dir data_dir \
		--task_name sent \
		--bert_model xlm-roberta-base \
		--tgt_lang fa \
		--train_max_seq_length 256 \
		--max_seq_length 256 \
		--epochs 20 \
		--batch_size 10 \
		--method metaxl \
		--output_dir ${output_dir} \
		--warmup_proportion 0.1 \
		--main_lr 3e-05 \
		--meta_lr 1e-6 \
		--train_size 1000 \
		--target_train_size 100 \
		--source_language_strategy specified  \
		--source_languages en \
		--layers 12 \
		--struct perceptron \
		--tied  \
		--transfer_component_add_weights \
		--tokenizer_dir None  \
		--bert_model_type ori  \
		--bottle_size 192  \
		--portion 2 	\
		--data_seed 42 \
		--seed 11  \
		--do_train  \
		--do_eval

Citation

If you find MetaXL useful, please cite the following paper

@inproceedings{xia2021metaxl,
  title={MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning},
  author={Mengzhou, Xia and Zheng, Guoqing and Mukherjee, Subhabrata and Shokouhi, Milad and Newbig, Graham and Awadallah, Ahmed Hassan},
  journal={NAACL},
  year={2021},
}

This repository is released under MIT License. (See LICENSE)

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023