Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Overview

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG)

Divyat Mahajan, Shruti Tople, Amit Sharma

Privacy & Causal Learning (ICML 2020) | MatchDG: Causal View of DG (ICML 2021) | Privacy & DG Connection paper

For machine learning models to be reliable, they need to generalize to data beyond the train distribution. In addition, ML models should be robust to privacy attacks like membership inference and domain knowledge-based attacks like adversarial attacks.

To advance research in building robust and generalizable models, we are releasing a toolkit for building and evaluating ML models, RobustDG. RobustDG contains implementations of domain generalization algorithms and includes evaluation benchmarks based on out-of-distribution accuracy and robustness to membership privacy attacks. We will be adding evaluation for adversarial attacks and more privacy attacks soon.

It is easily extendable. Add your own DG algorithms and evaluate them on different benchmarks.

Installation

To use the command-line interface of RobustDG, clone this repo and add the folder to your system's PATH (or alternatively, run the commands from the RobustDG root directory).

Load dataset

Let's first load the rotatedMNIST dataset in a suitable format for the resnet18 architecture.

python data/data_gen_mnist.py --dataset rot_mnist --model resnet18 --img_h 224 --img_w 224 --subset_size 2000

Train and evaluate ML model

The following commands would train and evalute the MatchDG method on the Rotated MNIST dataset.

python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.0 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos --match_func_aug_case 1

python train.py --dataset rot_mnist --method_name matchdg_erm --penalty_ws 0.1 --match_case -1 --ctr_match_case 0.0 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --epochs 25

python test.py --dataset rot_mnist --method_name matchdg_erm --penalty_ws 0.1 --match_case -1 --ctr_match_case 0.0 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --epochs 25 --test_metric acc

python test.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.0 --match_flag 1 --pos_metric cos --test_metric match_score

Demo

A quick introduction on how to use our repository can be accessed here in the Getting Started notebook.

If you are interested in reproducing results from the MatchDG paper, check out the Reproducing results notebook.

Roadmap

  • Support for more domain generalization algorithms like CSD and IRM. If you are an author of a DG algorithm and would like to contribute, please raise a pull request here or get in touch.
  • More evaluation metrics based on adversarial attacks, privacy attacks like model inversion. If you'd like to see an evaluation metric implemented, please raise an issue here.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-FranΓ§ois Bouchard 3.3k Jan 04, 2023
Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Felix Daudi 1 Jan 06, 2022
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
Automated Machine Learning with scikit-learn

auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here

AutoML-Freiburg-Hannover 6.7k Jan 07, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚑ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

LinkedIn 1.1k Jan 01, 2023
Traingenerator πŸ§™ A web app to generate template code for machine learning ✨

Traingenerator πŸ§™ A web app to generate template code for machine learning ✨ πŸŽ‰ Traingenerator is now live! πŸŽ‰

Johannes Rieke 1.2k Jan 07, 2023
ZenML πŸ™: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
A Lightweight Hyperparameter Optimization Tool πŸš€

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022