Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Overview

Backprop

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Solve a variety of tasks with pre-trained models or finetune them in one line for your own tasks.

Out of the box tasks you can solve with Backprop:

  • Conversational question answering in English
  • Text Classification in 100+ languages
  • Image Classification
  • Text Vectorisation in 50+ languages
  • Image Vectorisation
  • Summarisation in English
  • Emotion detection in English
  • Text Generation

For more specific use cases, you can adapt a task with little data and a single line of code via finetuning.

Getting started Installation, few minute introduction
💡 Examples Finetuning and usage examples
📙 Docs In-depth documentation about task inference and finetuning
⚙️ Models Overview of available models

Getting started

Installation

Install Backprop via PyPi:

pip install backprop

Basic task inference

Tasks act as interfaces that let you easily use a variety of supported models.

import backprop

context = "Take a look at the examples folder to see use cases!"

qa = backprop.QA()

# Start building!
answer = qa("Where can I see what to build?", context)

print(answer)
# Prints
"the examples folder"

You can run all tasks and models on your own machine, or in production with our inference API, simply by specifying your api_key.

See how to use all available tasks.

Basic finetuning and uploading

Each task implements finetuning that lets you adapt a model for your specific use case in a single line of code.

A finetuned model is easy to upload to production, letting you focus on building great applications.

import backprop

tg = backprop.TextGeneration("t5-small")

# Any text works as training data
inp = ["I really liked the service I received!", "Meh, it was not impressive."]
out = ["positive", "negative"]

# Finetune with a single line of code
tg.finetune({"input_text": inp, "output_text": out})

# Use your trained model
prediction = tg("I enjoyed it!")

print(prediction)
# Prints
"positive"

# Upload to Backprop for production ready inference
# Describe your model
name = "t5-sentiment"
description = "Predicts positive and negative sentiment"

tg.upload(name=name, description=description, api_key="abc")

See finetuning for other tasks.

Why Backprop?

  1. No experience needed

    • Entrance to practical AI should be simple
    • Get state-of-the-art performance in your task without being an expert
  2. Data is a bottleneck

    • Solve real world tasks without any data
    • With transfer learning, even a small amount of data can adapt a task to your niche requirements
  3. There are an overwhelming amount of models

    • We offer a curated selection of the best open-source models and make them simple to use
    • A few general models can accomplish more with less optimisation
  4. Deploying models cost effectively is hard work

    • If our models suit your use case, no deployment is needed: just call our API
    • Adapt and deploy your own model with just a few lines of code
    • Our API scales, is always available, and you only pay for usage

Examples

Documentation

Check out our docs for in-depth task inference and finetuning.

Model Hub

Curated list of state-of-the-art models.

Demos

Zero-shot image classification with CLIP.

Credits

Backprop relies on many great libraries to work, most notably:

Feedback

Found a bug or have ideas for new tasks and models? Open an issue.

Owner
Backprop
Making machine learning easy for every developer.
Backprop
A high performance and generic framework for distributed DNN training

BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith

Bytedance Inc. 3.3k Dec 28, 2022
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm.

Naive-Bayes Spam Classificator Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm. Main goal is to code a

Viktoria Maksymiuk 1 Jun 27, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

The unified machine learning framework, enabling framework-agnostic functions, layers and libraries. Contents Overview In a Nutshell Where Next? Overv

Ivy 8.2k Dec 31, 2022
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022