Code for "Unsupervised State Representation Learning in Atari"

Overview

Unsupervised State Representation Learning in Atari

Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm

This repo provides code for the benchmark and techniques introduced in the paper Unsupervised State Representation Learning in Atari

Install

AtariARI Wrapper

You can do a minimal install to get just the AtariARI (Atari Annotated RAM Interface) wrapper by doing:

pip install 'gym[atari]'
pip install git+git://github.com/mila-iqia/atari-representation-learning.git

This just requires gym[atari] and it gives you the ability to play around with the AtariARI wrapper. If you want to use the code for training representation learning methods and probing them, you will need a full installation:

Full installation (AtariARI Wrapper + Training & Probing Code)

# PyTorch and scikit learn
conda install pytorch torchvision -c pytorch
conda install scikit-learn

# Baselines for Atari preprocessing
# Tensorflow is a dependency, but you don't need to install the GPU version
conda install tensorflow
pip install git+git://github.com/openai/baselines

# pytorch-a2c-ppo-acktr for RL utils
pip install git+git://github.com/ankeshanand/pytorch-a2c-ppo-acktr-gail

# Clone and install our package
pip install -r requirements.txt
pip install git+git://github.com/mila-iqia/atari-representation-learning.git

Usage

Atari Annotated RAM Interface (AtariARI):

AtariARI exposes the ground truth labels for different state variables for each observation. We have made AtariARI available as a Gym wrapper, to use it simply wrap an Atari gym env with AtariARIWrapper.

import gym
from atariari.benchmark.wrapper import AtariARIWrapper
env = AtariARIWrapper(gym.make('MsPacmanNoFrameskip-v4'))
obs = env.reset()
obs, reward, done, info = env.step(1)

Now, info is a dictionary of the form:

{'ale.lives': 3,
 'labels': {'enemy_sue_x': 88,
  'enemy_inky_x': 88,
  'enemy_pinky_x': 88,
  'enemy_blinky_x': 88,
  'enemy_sue_y': 80,
  'enemy_inky_y': 80,
  'enemy_pinky_y': 80,
  'enemy_blinky_y': 50,
  'player_x': 88,
  'player_y': 98,
  'fruit_x': 0,
  'fruit_y': 0,
  'ghosts_count': 3,
  'player_direction': 3,
  'dots_eaten_count': 0,
  'player_score': 0,
  'num_lives': 2}}

Note: In our experiments, we use additional preprocessing for Atari environments mainly following Minh et. al, 2014. See atariari/benchmark/envs.py for more info!

If you want the raw RAM annotations (which parts of ram correspond to each state variable), check out atariari/benchmark/ram_annotations.py

Probing


⚠️ Important ⚠️ : The RAM labels are meant for full-sized Atari observations (210 * 160). Probing results won't be accurate if you downsample the observations.

We provide an interface for the included probing tasks.

First, get episodes for train, val and, test:

from atariari.benchmark.episodes import get_episodes

tr_episodes, val_episodes,\
tr_labels, val_labels,\
test_episodes, test_labels = get_episodes(env_name="PitfallNoFrameskip-v4", 
                                     steps=50000, 
                                     collect_mode="random_agent")

Then probe them using ProbeTrainer and your encoder (my_encoder):

from atariari.benchmark.probe import ProbeTrainer

probe_trainer = ProbeTrainer(my_encoder, representation_len=my_encoder.feature_size)
probe_trainer.train(tr_episodes, val_episodes,
                     tr_labels, val_labels,)
final_accuracies, final_f1_scores = probe_trainer.test(test_episodes, test_labels)

To see how we use ProbeTrainer, check out scripts/run_probe.py

Here is an example of my_encoder:

# get your encoder
import torch.nn as nn
import torch
class MyEncoder(nn.Module):
    def __init__(self, input_channels, feature_size):
        super().__init__()
        self.feature_size = feature_size
        self.input_channels = input_channels
        self.final_conv_size = 64 * 9 * 6
        self.cnn = nn.Sequential(
            nn.Conv2d(input_channels, 32, 8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, 4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 128, 4, stride=2),
            nn.ReLU(),
            nn.Conv2d(128, 64, 3, stride=1),
            nn.ReLU()
        )
        self.fc = nn.Linear(self.final_conv_size, self.feature_size)

    def forward(self, inputs):
        x = self.cnn(inputs)
        x = x.view(x.size(0), -1)
        return self.fc(x)
        

my_encoder = MyEncoder(input_channels=1,feature_size=256)
# load in weights
my_encoder.load_state_dict(torch.load(open("path/to/my/weights.pt", "rb")))

Spatio-Temporal DeepInfoMax:

src/ contains implementations of several representation learning methods, along with ST-DIM. Here's a sample usage:

python -m scripts.run_probe --method infonce-stdim --env-name {env_name}

where env_name is of the form {game}NoFrameskip-v4, such as PongNoFrameskip-v4

Citation

@article{anand2019unsupervised,
  title={Unsupervised State Representation Learning in Atari},
  author={Anand, Ankesh and Racah, Evan and Ozair, Sherjil and Bengio, Yoshua and C{\^o}t{\'e}, Marc-Alexandre and Hjelm, R Devon},
  journal={arXiv preprint arXiv:1906.08226},
  year={2019}
}
Owner
Mila
Quebec Artificial Intelligence Institute
Mila
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022