SVG Icon processing tool for C++

Related tags

Deep Learningbawr
Overview

BAWR

This is a tool to automate the icons generation from sets of svg files into fonts and atlases.

The main purpose of this tool is to add it to the build process of your c++ project and let it do all the work, then you can use your svg icons as fonts or as spritesheets.

The project url is: https://github.com/mnesarco/bawr This project is based on a previous project: https://github.com/mnesarco/ff-batch

Features

  • Generate TrueType fonts from svg collections.
  • Generate png textures from svg collections.
  • Embed binaries into c++ sources ready to link.
  • Generate ImGui Font Loaders (c++). (howto)
  • Generate c++ Atlas Maps.
  • Generate c++ Font constants as Macros and/or as const/constexpr.
  • Apply transformation to svg files during the generation.
    • Textual transformations
    • Font forge supported transformations

Requirements

  • Python 3.6+
  • FontForge 20170924+
  • Inkscape 1.0+

Install

Build from sources

git clone https:://github.com/mnesarco/bawr.git
cd bawr

python3 -m pip install --upgrade build
python3 -m pip install wheel

python3 -m build 
python3 -m pip install dist/bawr-0.0.3-py3-none-any.whl

Or from pypi:

python3 -m pip install bawr

Terminology

Concept Description
Svg Icon It is just a file in .svg format. It must be a square.
Icon set or Collection It is a folder with svg icons
Configuration file It is a python file with all the options to generate your files. By convention it is called config.py

Usage

  1. Create a folder
  2. Put a file named config.py (you can copy the one from examples dir https://github.com/mnesarco/bawr/tree/main/examples)
  3. Add folders with svg icons
  4. Adjust the configuration (edit config.py)
  5. Call bawr
cd examples
python3 -m bawr.tool

Examples

You can use the examples dir (https://github.com/mnesarco/bawr/tree/main/examples) as a template for your project:

examples/
├── config.py
├── icons/
└── bootstrap-icons/

Result (generated files):

examples/build/
├── atlas_cells.hpp
├── atlas.cpp
├── atlas.hpp
├── atlas.png
├── my-icons_codes.hpp
├── my-icons.cpp
├── my-icons.hpp
├── my-icons_loader.hpp
└── my-icons.ttf

Configuration (config.py)

#------------------------------------------------------------------------------
# Import all required stuff:
#------------------------------------------------------------------------------

from bawr.config import *

#------------------------------------------------------------------------------
# Define an environment (Use the name that you want, but extend Environment):
#------------------------------------------------------------------------------

class Env( Environment ):

    # [Optional] FONTFORGE_PATH = Path to fontforge executable, deduced if it is in PATH
    # FONTFORGE_PATH = ...

    # [Optional] INKSCAPE_PATH = Path to inkscape executable, deduced if it is in PATH
    # INKSCAPE_PATH = ...   

    # [Optional] BAWR_OUTPUT_DIR = Where all the output will be generated. Default = ./build
    # BAWR_OUTPUT_DIR = ...

    # [Optional] BAWR_SOURCE_DIR = Where all the icon folders will be found. Default = ./
    #  BAWR_SOURCE_DIR = ...

    pass

#------------------------------------------------------------------------------
# Define your icon sets (extend IconSet):
#------------------------------------------------------------------------------

class BootstrapIcons( IconSet ):

    # [Mandatory] src = directory name (which contains svg icons)
    src = 'bootstrap-icons'

    # [Optional] select = selection of icons from the directory: list( tuple(file-name, glyph-name) )
    select = [
        ('info-circle',              'infoCircle'),
        ('file-earmark',             'fileEarmark'),
        ('folder2-open',             'folderOpen'),
        ('hdd',                      'save'),
        ('file-earmark-arrow-up',    'fileImport'),
        ('file-earmark-arrow-down',  'fileExport'),
        ('folder',                   'folder'),
        ('sliders',                  'sliders'),
        ('eye',                      'eye'),
        ('layers',                   'layers'),
    ]

    # [Optional] options = Special options for generators
    options = {
        "font_transformation": [('scale', 0.75, 0.75)],
        "atlas_preprocessors": [
            RegexReplacePreprocessor(
                {
                    "currentColor": "#ffffff",
                    'width="1em"': 'width="16"',
                    'height="1em"': 'height="16"',
                }            
            )
        ],
        "atlas_margin": 0.0625
    }

# Another icon set with different options

class MyIcons( IconSet ):

    src = 'icons'

    options = {
        "atlas_preprocessors": [
            RegexReplacePreprocessor(
                {
                    'fill:#000000': "fill:#ffffff",
                    'stroke:#000000': 'stroke:#ffffff',
                }            
            )
        ]
    }

#------------------------------------------------------------------------------
# [Optional]
# Define Font generator to generate truetype fonts using FontForge
# (extend Font)
#------------------------------------------------------------------------------

class MyFont( Font ):

    # Generated font copyright notice [Mandatory]
    copyright = "Copyright 2020 Frank D. Martinez M."

    # Font name [Mandatory]
    name = "my-icons"

    # Font family [Mandatory]
    family = "my-icons"

    # First font glyph code [Optional] (default = 0xe000)
    # start_code = 0xe000

    # List ot tuple of the icon sets included in this font [Mandatory]
    collections = (BootstrapIcons, MyIcons)

    # Global font transformation [Optiona] (See: Font transformations)
    # transformation = []

    # Output format [Optional] (default = ['ttf'])
    # output_formats = ['ttf']

    # Verbose output. Shows glyph generation details [Optional] (default = False)
    # verbose = False


#------------------------------------------------------------------------------
# [Optional]
# You can generate a C++ font header file with glyph codes ready to use in C++.
# (extend CppFontHeader)
#------------------------------------------------------------------------------

class MyCppFontH( CppFontHeader ):

    # [Mandatory] Reference to the font generator to use
    source = MyFont    

    # [Optional] Generate constexpr values (default = false)
    constexpr = True

    # [Optional] name of the generated c++ file (default = source.name)
    # name = ...

    # [Optional] namespace of the generated c++ file (default = icons)
    # namespace = ...

    # [Optional] Generate macros (default = True)
    # macros = ...

    # [Optional] Prefix for all macros (default = Icon_)
    # macro_prefix = ...


#------------------------------------------------------------------------------
# [Optional]
# You can Embed your font binary into a C++ source file to be linked.
# (extend CppEmbedded)
#------------------------------------------------------------------------------

class MyCppFontEmbed( CppEmbedded ):

    # [Mandatory] Reference to the binary file to embed
    source = "${BAWR_OUTPUT_DIR}/my-icons.ttf"

    # [Optional] name prefix for the generated files (default = source name)
    # name = ...

    # [Optional] namespace for the generated files (default = icons)
    # namespace = ...


#------------------------------------------------------------------------------
# [Optional]
# You can generate C++ code to load your font into Dear ImGui.
# (extend CppEmbedded)
#------------------------------------------------------------------------------

class MyCppFontImGui( ImGuiFontLoader ):

    # [Mandatory] reference to the font
    font = MyFont

    # [Mandatory] reference to the font header
    header = MyCppFontH    

    # [Mandatory] reference to the embedded binary
    data = MyCppFontEmbed

    # [Optional] name prefix for the generated files (default = font.name)
    # name = ...

    # [Optional] namespace for the generated files (default = icons)
    # namespace = ...

#------------------------------------------------------------------------------
# [Optional]
# You can generate an optimized png atlas with all your icons in different sizes.
# (extend Atlas)
#------------------------------------------------------------------------------

class MyAtlas( Atlas ):

    # [Optional] width of the atlas image (default = 512)
    width = 512

    # [Mandatory] sizes of the icons to be generated and included in the atlas
    sizes = (16, 32, 64)

    # [Mandatory] References to collections (icon sets) to be included
    collections = (BootstrapIcons, MyIcons)

    # [Optional] name prefix for the generated files (default = font.name)
    # name = ...

# [Optional] Embed the Atlas png into a C++ source.
class MyCppAtlasEmbed( CppEmbedded ):
    source = "${BAWR_OUTPUT_DIR}/atlas.png"

#------------------------------------------------------------------------------
# [Optional]
# Generate a C++ header file with the atlas cells (frames) to be used in your code.
# (extend CppAtlasHeader)
#------------------------------------------------------------------------------

class MyAtlasHeader( CppAtlasHeader ):
    source = MyAtlas

How to use with Dear ImGui:

https://github.com/mnesarco/bawr/blob/main/ImGui.md

What is in the name

BAWR in honor of Bertrand Arthur William Russell, a great Logician, Mathematician and Philosopher of the IX and XX centuries.

Owner
Frank David Martínez M
Frank David Martínez M
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022