Experiments with differentiable stacks and queues in PyTorch

Related tags

Deep LearningStackNN
Overview

Please use stacknn-core instead!


StackNN

This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in such a way that it should be easy to integrate them into your own models. For example, to construct a differentiable stack and perform a push:

from StackNN.structs import Stack
stack = Stack(BATCH_SIZE, STACK_VECTOR_SIZE)
read_vectors = stack(value_vectors, pop_strengths, push_strengths)

For examples of more complex use cases of this library, refer to the industrial-stacknns repository.

All the code in this repository is associated with the paper Context-Free Transductions with Neural Stacks, which appeared at the Analyzing and Interpreting Neural Networks for NLP workshop at EMNLP 2018. Refer to our paper for more theoretical background on differentiable data structures.

Running a demo

Check example.ipynb for the most up-to-date demo code.

There are several experiment configurations pre-defined in configs.py. To train a model on one of these configs, do:

python run.py CONFIG_NAME

For example, to train a model on the string reversal task:

python run.py final_reverse_config

In addition to the experiment configuration argument, run.py takes several flags:

  • --model: Model type (BufferedModel or VanillaModel)
  • --controller: Controller type (LinearSimpleStructController, LSTMSimpleStructController, etc.)
  • --struct: Struct type (Stack, NullStruct, etc.)
  • --savepath: Path for saving a trained model
  • --loadpath: Path for loading a model

Documentation

You can find auto-generated documentation here.

Contributing

This project is managed by Computational Linguistics at Yale. We welcome contributions from outside in the form of pull requests. Please report any bugs in the GitHub issues tracker. If you are a Yale student interested in joining our lab, please contact Bob Frank.

Citations

If you use this codebase in your research, please cite the associated paper:

@inproceedings{hao-etal-2018-context,
    title = "Context-Free Transductions with Neural Stacks",
    author = "Hao, Yiding  and
      Merrill, William  and
      Angluin, Dana  and
      Frank, Robert  and
      Amsel, Noah  and
      Benz, Andrew  and
      Mendelsohn, Simon",
    booktitle = "Proceedings of the 2018 {EMNLP} Workshop {B}lackbox{NLP}: Analyzing and Interpreting Neural Networks for {NLP}",
    month = nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/W18-5433",
    pages = "306--315",
    abstract = "This paper analyzes the behavior of stack-augmented recurrent neural network (RNN) models. Due to the architectural similarity between stack RNNs and pushdown transducers, we train stack RNN models on a number of tasks, including string reversal, context-free language modelling, and cumulative XOR evaluation. Examining the behavior of our networks, we show that stack-augmented RNNs can discover intuitive stack-based strategies for solving our tasks. However, stack RNNs are more difficult to train than classical architectures such as LSTMs. Rather than employ stack-based strategies, more complex stack-augmented networks often find approximate solutions by using the stack as unstructured memory.",
}

Dependencies

The core implementation of the data structures is stable in Python 2 and 3. The specific tasks that we have implemented require Python 2.7. We use PyTorch version 0.4.1, with the following additional dependencies:

  • numpy
  • scipy (for data processing)
  • matplotlib (for visualization)
  • nltk

Using pip or conda should suffice for installing most of these dependencies. To get the right command for installing PyTorch, refer to the installation widget on the PyTorch website.

Models

A model is a pairing of a controller network with a neural data structure. There are two kinds of models:

  • models.VanillaModel is a simple controller-data structure network. This means there will be one step of computation per input.
  • models.BufferedModel adds input and output buffers to the vanilla model. This allows the network to run for extra computation steps.

To use a model, call model.forward() on every input and model.init_controller() whenever you want to reset the stack between inputs. You can find example training logic in the tasks package.

Data structures

  • structs.Stack implements the differentiable stack data structure.
  • structs.Queue implements the differentiable queue data structure.

The buffered models use read-only and write-only versions of the differentiable queue for their input and output buffers.

Tasks

The Task class defines specific tasks that models can be trained on. Below are some formal language tasks that we have explored using stack models.

String reversal

The ReverseTask trains a feed-forward controller network to do string reversal. The code generates 800 random binary strings which the network must reverse in a sequence-to-sequence fashion:

Input:   1 1 0 1 # # # #
Label:   # # # # 1 0 1 1

By 10 epochs, the model tends to achieve 100% accuracy. The config for this task is called final_reverse_config.

Context-free language modelling

CFGTask can be used to train a context-free language model. Many interesting questions probing linguistic structure can be reduced to special cases of this general task. For example, the task can be used to model a language of balanced parentheses. The configuration for the parentheses task is final_dyck_config.

Evaluation tasks

We also have a class for evaluation tasks. These are tasks where output i can be succintly expressed as some function of inputs 0, .., i. Some applications of this are evaluation of parity and reverse polish boolean formulae.

Real datasets

The data folder contains several real datasets that the stack can be trained on. We should implement a task for reading in these datasets.

Owner
Will Merrill
NLP x linguistics x theory w/ AllenNLP.
Will Merrill
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022