A library to access OpenStreetMap related services

Overview

OSMPythonTools

The python package OSMPythonTools provides easy access to OpenStreetMap (OSM) related services, among them an Overpass endpoint, Nominatim, and the OSM API.

Installation

To install OSMPythonTools, you will need python3 and pip (How to install pip). Then execute:

pip install OSMPythonTools

On some operating systems, pip for python3 is named pip3:

pip3 install OSMPythonTools

Example 1

Which object does the way with the ID 5887599 represent?

We can use the OSM API to answer this question:

from OSMPythonTools.api import Api
api = Api()
way = api.query('way/5887599')

The resulting object contains information about the way, which can easily be accessed:

way.tag('building')
# 'castle'
way.tag('architect')
# 'Johann Lucas von Hildebrandt'
way.tag('website')
# 'http://www.belvedere.at'

Example 2

What is the English name of the church called ‘Stephansdom’, what address does it have, and which of which denomination is the church?

We use the Overpass API to query the corresponding data:

from OSMPythonTools.overpass import Overpass
overpass = Overpass()
result = overpass.query('way["name"="Stephansdom"]; out body;')

This time, the result is a number of objects, which can be accessed by result.elements(). We just pick the first one:

stephansdom = result.elements()[0]

Information about the church can now easily be accessed:

stephansdom.tag('name:en')
# "Saint Stephen's Cathedral"
'%s %s, %s %s' % (stephansdom.tag('addr:street'), stephansdom.tag('addr:housenumber'), stephansdom.tag('addr:postcode'), stephansdom.tag('addr:city'))
# 'Stephansplatz 3, 1010 Wien'
stephansdom.tag('building')
# 'cathedral'
stephansdom.tag('denomination')
# 'catholic'

Example 3

How many trees are in the OSM data of Vienna? And how many trees have there been in 2013?

This time, we have to first resolve the name ‘Vienna’ to an area ID:

from OSMPythonTools.nominatim import Nominatim
nominatim = Nominatim()
areaId = nominatim.query('Vienna, Austria').areaId()

This area ID can now be used to build the corresponding query:

from OSMPythonTools.overpass import overpassQueryBuilder, Overpass
overpass = Overpass()
query = overpassQueryBuilder(area=areaId, elementType='node', selector='"natural"="tree"', out='count')
result = overpass.query(query)
result.countElements()
# 137830

There are 134520 trees in the current OSM data of Vienna. How many have there been in 2013?

result = overpass.query(query, date='2013-01-01T00:00:00Z', timeout=60)
result.countElements()
# 127689

Example 4

Where are waterbodies located in Vienna?

Again, we have to resolve the name ‘Vienna’ before running the query:

from OSMPythonTools.nominatim import Nominatim
nominatim = Nominatim()
areaId = nominatim.query('Vienna, Austria').areaId()

The query can be built like in the examples before. This time, however, the argument includeGeometry=True is provided to the overpassQueryBuilder in order to let him generate a query that downloads the geometry data.

from OSMPythonTools.overpass import overpassQueryBuilder, Overpass
overpass = Overpass()
query = overpassQueryBuilder(area=areaId, elementType=['way', 'relation'], selector='"natural"="water"', includeGeometry=True)
result = overpass.query(query)

Next, we can exemplarily choose one random waterbody (the first one of the download ones) and compute its geometry like follows:

firstElement = result.elements()[0]
firstElement.geometry()
# {"coordinates": [[[16.498671, 48.27628], [16.4991, 48.276345], ... ]], "type": "Polygon"}

Observe that the resulting geometry is provided in the GeoJSON format.

Example 5

How did the number of trees in Berlin, Paris, and Vienna change over time?

Before we can answer the question, we have to import some modules:

from collections import OrderedDict
from OSMPythonTools.data import Data, dictRangeYears, ALL
from OSMPythonTools.overpass import overpassQueryBuilder, Overpass

The question has two ‘dimensions’: the dimension of time, and the dimension of different cities:

dimensions = OrderedDict([
    ('year', dictRangeYears(2013, 2017.5, 1)),
    ('city', OrderedDict({
        'berlin': 'Berlin, Germany',
        'paris': 'Paris, France',
        'vienna': 'Vienna, Austria',
    })),
])

We have to define how we fetch the data. We again use Nominatim and the Overpass API to query the data (it can take some time to perform this query the first time!):

overpass = Overpass()
def fetch(year, city):
    areaId = nominatim.query(city).areaId()
    query = overpassQueryBuilder(area=areaId, elementType='node', selector='"natural"="tree"', out='count')
    return overpass.query(query, date=year, timeout=60).countElements()
data = Data(fetch, dimensions)

We can now easily generate a plot from the result:

data.plot(city=ALL, filename='example4.png')

data.plot(city=ALL, filename='example4.png')

Alternatively, we can generate a table from the result

data.select(city=ALL).getCSV()
# year,berlin,paris,vienna
# 2013.0,10180,1936,127689
# 2014.0,17971,26905,128905
# 2015.0,28277,90599,130278
# 2016.0,86769,103172,132293
# 2017.0,108432,103246,134616

More examples can be found inside the documentation of the modules.

Usage

The following modules are available (please click on their names to access further documentation):

Please refer to the general remarks page if you have further questions related to OSMPythonTools in general or functionality that the several modules have in common.

Observe the breaking changes as included in the version history.

Logging

This library is a little bit more verbose than other Python libraries. The good reason behind is that the OpenStreetMap, the Nominatim, and the Overpass servers experience a heavy load already and their resources should be used carefully. In order to make you, the user of this library, aware of when OSMPythonTools accesses these servers, corresponding information is logged by default. In case you want to suppress these messages, you have to insert the following lines after the import of OSMPythonTools:

import logging
logging.getLogger('OSMPythonTools').setLevel(logging.ERROR)

Please note that suppressing the messages means that you have to ensure on your own that you do not overuse the provided services and that you stick to their fair policy guidelines.

Tests

You can test the package by running

pytest --verbose

Please note that the tests might run very long (several minutes) because the overpass server will most likely defer the downloads.

Author

This application is written and maintained by Franz-Benjamin Mocnik, [email protected].

(c) by Franz-Benjamin Mocnik, 2017-2021.

The code is licensed under the GPL-3.

Owner
Franz-Benjamin Mocnik
Franz-Benjamin Mocnik
Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Ayush Mishra 3 May 06, 2022
A service to auto provision devices in Aruba Central based on the Geo-IP location

Location Based Provisioning Service for Aruba Central A service to auto provision devices in Aruba Central based on the Geo-IP location Geo-IP auto pr

Will Smith 3 Mar 22, 2022
A set of utility functions for working with GeoJSON annotations in Kaibu

kaibu-utils A set of utility functions for working with Kaibu. Create a new repository Create a new repository and select imjoy-team/imjoy-python-temp

ImJoy Team 0 Dec 12, 2021
Rasterio reads and writes geospatial raster datasets

Rasterio Rasterio reads and writes geospatial raster data. Geographic information systems use GeoTIFF and other formats to organize and store gridded,

Mapbox 1.9k Jan 07, 2023
Track International space station with python

NASA-ISS-tracker Track International space station with python Modules import json import turtle import urllib.request import time import webbrowser i

Nikhil Yadav 8 Aug 12, 2021
Download and process satellite imagery in Python using Sentinel Hub services.

Description The sentinelhub Python package allows users to make OGC (WMS and WCS) web requests to download and process satellite images within your Py

Sentinel Hub 659 Dec 23, 2022
Advanced raster and geometry manipulations

buzzard In a nutshell, the buzzard library provides powerful abstractions to manipulate together images and geometries that come from different kind o

Earthcube Lab 30 Jun 20, 2022
A simple python script that, given a location and a date, uses the Nasa Earth API to show a photo taken by the Landsat 8 satellite. The script must be executed on the command-line.

What does it do? Given a location and a date, it uses the Nasa Earth API to show a photo taken by the Landsat 8 satellite. The script must be executed

Caio 42 Nov 26, 2022
ESMAC diags - Earth System Model Aerosol-Cloud Diagnostics Package

Earth System Model Aerosol-Cloud Diagnostics Package This Earth System Model (ES

Pacific Northwest National Laboratory 1 Jan 04, 2022
Replace MSFS2020's bing map to google map

English verison here 中文 免责声明 本教程提到的方法仅用于研究和学习用途。我不对使用、拓展该教程及方法所造成的任何法律责任和损失负责。 背景 微软模拟飞行2020的地景使用了Bing的卫星地图,然而卫星地图比较老旧,很多地区都是几年前的图设置直接是没有的。这种现象在全球不同地区

hesicong 272 Dec 24, 2022
Google maps for Jupyter notebooks

gmaps gmaps is a plugin for including interactive Google maps in the IPython Notebook. Let's plot a heatmap of taxi pickups in San Francisco: import g

Pascal Bugnion 747 Dec 19, 2022
This program analizes films database with adresses, and creates a folium map with closest films to the coordinates

Films-map-project UCU CS lab 1.2, 1st year This program analizes films database with adresses, and creates a folium map with closest films to the coor

Artem Moskovets 1 Feb 09, 2022
Tools for the extraction of OpenStreetMap street network data

OSMnet Tools for the extraction of OpenStreetMap (OSM) street network data. Intended to be used in tandem with Pandana and UrbanAccess libraries to ex

Urban Data Science Toolkit 47 Sep 21, 2022
Water Detect Algorithm

WaterDetect Synopsis WaterDetect is an end-to-end algorithm to generate open water cover mask, specially conceived for L2A Sentinel 2 imagery from MAJ

142 Dec 30, 2022
A light-weight, versatile XYZ tile server, built with Flask and Rasterio :earth_africa:

Terracotta is a pure Python tile server that runs as a WSGI app on a dedicated webserver or as a serverless app on AWS Lambda. It is built on a modern

DHI GRAS 531 Dec 28, 2022
User friendly Rasterio plugin to read raster datasets.

rio-tiler User friendly Rasterio plugin to read raster datasets. Documentation: https://cogeotiff.github.io/rio-tiler/ Source Code: https://github.com

372 Dec 23, 2022
Python Data. Leaflet.js Maps.

folium Python Data, Leaflet.js Maps folium builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the Leaflet.js

6k Jan 02, 2023
Geographic add-ons for Django REST Framework. Maintained by the OpenWISP Project.

Geographic add-ons for Django REST Framework. Maintained by the OpenWISP Project.

OpenWISP 982 Jan 06, 2023
This is the antenna performance plotted from tinyGS reception data.

tinyGS-antenna-map This is the antenna performance plotted from tinyGS reception data. See their repository. The code produces a plot that provides Az

Martin J. Levy 14 Aug 21, 2022
Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Apoorva Lal 5 May 18, 2022