Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Overview

Kaggle-Comp.-Data-Mining

Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data mining course. I later went back and extended work to include more models/attempts.

Machine Learning Models attempted for predictions:

  • Simple Multiple Linear Regression
  • Polynomial Regression
  • Ridge and Lasso Regression
  • Principal Component Regression
  • Support Vector Classifiers and Support Vector Machines
  • Deep and Prunned Regression Trees
  • Bagging and Boosting
  • Random Forests (Best Model for Predictions)
  • Artificial Neural Networks for Regression

Kaggle Competition Link:

https://www.kaggle.com/c/ucla-stats-101c-2021-lec3-new/overview

Owner
moisey alaev
I am currently a UCLA Senior studying Math of Computation and Minoring in Stats. I am most passionate about Machine Learning and Software Development.
moisey alaev
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022
CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

Zelros 67 Dec 28, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Background This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representation

Shauli Ravfogel 4 Apr 13, 2022
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions

A library for debugging/inspecting machine learning classifiers and explaining their predictions

154 Dec 17, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

2.3k Jan 04, 2023
Deploy AutoML as a service using Flask

AutoML Service Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving. The framework imp

Chris Rawles 221 Nov 04, 2022
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
Uber Open Source 1.6k Dec 31, 2022
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023