This is a library for simulate probability theory problems specialy conditional probability

Related tags

Miscellaneouspprobs
Overview

Introduction

This is a library for simulating probability theory problems, especially conditional probability. It is also useful to create a custom single or joint distribution with a specific PMF or PDF to get a probability table and generate data based on a probability function.

How to install?

pip install pprobs

Probability Simulator

It simulates probability theory problems, especially conditional probability.

Example 1

We want to get some information by defining some events.

  • P(A) = 0.3
  • P(B) = 0.2
  • P(A^B) = 0.1
  • A and B are dependent
  • P(A+B) = ? , P(A|B) = ?
from pprobs.simulation import Simulator

space = Simulator()

space.add_event('A', 0.3)
space.add_event('B', 0.2)
space.add_event('A^B', 0.1)

prob_1 = space.get_prob('A+B') # A+B means union of A and B
prob_2 = space.get_prob('A|B')

print(prob_1, prob_2) # 0.4  0.5

Example 2

In a group of 100 sports car buyers, 40 bought alarm systems, 30 purchased bucket seats, and 20 purchased an alarm system and bucket seats. If a car buyer chosen at random bought an alarm system, what is the probability they also bought bucket seats?

By Statisticshowto

  • P(SEAT) = 0.3
  • P(ALARM) = 0.4
  • P(SEAT ^ ALARM) = 0.2
  • P(SEAT | ALARAM) = ?
from pprobs.simulation import Simulator

space = Simulator()

space.add_event('SEAT', 0.3).add_event('ALARM', 0.4) # We can also add events sequentially in a line (chaining) 
space.add_event('SEAT^ALARM', 0.2) # A^B means intersection of A & B

print(space.get_prob('SEAT|ALARM')) # 0.5

Example 3

Totaly 1% of people have a certain genetic defect.90% of tests for the gene detect the defect (true positives). 9.6% of the tests are false positives. If a person gets a positive test result, what are the odds they actually have the genetic defect?

By Statisticshowto

  • P(GEN_DEF) = 0.01
  • P(POSITIVE|GEN_DEF) = 0.9
  • P(POSITIVE|GEN_DEF!) = 0.096
  • P(GEN_DEF|POSITIVE) = ?
space = Simulator()

space.add_event('GEN_DEF', 0.01)
space.add_event('POSITIVE|GEN_DEF', 0.9) # A|B means A given B
space.add_event('POSITIVE|GEN_DEF!', 0.096) # A! means complement of A

print(space.get_prob('GEN_DEF|POSITIVE')) # 0.0865

Example 4

Bob has an important meeting tomorrow and he has to reach the office on time in the morning. His general mode of transport is by car and on a regular day (no car trouble) the probability that he will reach on time is 0.3. The probability that he might have car trouble is 0.2. If the car runs into trouble he will have to take a train and only 2 trains out of the available 10 trains will get him to the office on time.

By Hackerearth

  • P(ON_TIME|CAR_OK) = 0.3
  • P(ON_TIME|CAR_OK!) = 2/10 => Go by train
  • P(CAR_OK!) = 0.2
  • P(ON_TIME) = ?
space = Simulator()

space.add_event('ON_TIME|CAR_OK', 0.3)
space.add_event('ON_TIME|CAR_OK!', 2/10)
space.add_event('CAR_OK!', 0.2)

prob = space.get_prob('ON_TIME') # Probability of ON_TIME

print(prob) # 0.28

Distribution Simulator

It is useful to create a custom single or joint distribution with a specific PMF or PDF to get a probability table and generate data based on a probability function.

Example 1

Suppose that we have a discrete random variable with a specific PMF. We want to generate many data based on this variable. As you see in the second example 1 has the largest probability and duplicates more and 4 has the smallest probability and duplicates less.

from pprobs.distribution import Discrete

# First 
def pmf(x):
    return 1 / 6

dist = Discrete(pmf, [1, 2, 3, 4, 5, 6]) # The second is the sample space of our PMF

print(dist.generate(15)) # [4, 3, 1, 6, 5, 3, 5, 3, 5, 4, 2, 5, 6, 1, 6]


# Second
def pmf(x):
    return 1 / x

dist = Discrete(pmf, [1, 2, 3, 4])
print(dist.generate(15)) # [1, 2, 1, 1, 1, 4, 3, 1, 1, 3, 2, 4, 1, 2, 2]

Example 2

Suppose that we have a continuous random variable with a specific PDF.

from pprobs.distribution import Continuous

def pdf(x):
  if x > 1:
    return x / x ** 2
  return 0

dist = Continuous(pdf, [1, 6]) # The second is the sample interval of our PDF

print(dist.generate(15)) # [2.206896551724138, 4.103448275862069, ..., 5.655172413793104, 6.0]

Example 3

Suppose that we have a Continuous Joint variable with a specific PDF.

from pprobs.distribution import Joint

def pdf(x, y):
  if x > 1:
    return 1 / (x * y)
  return 0

dist = Joint(pdf, [1, 6], [3, 10]) # The second and third are the intervals of our PDF

print(dist.probability_table(force=20)) # if force gets more, many number will generate

Output:

X/Y x=3.0 X=3.7 ... X=10
X=1.0 0.000 0.000 ... 0.000
... ... ... ... ...
X=6.0 0.055 0.044 ... 0.016
print(dist.get_prob(3.5, 3.5)) # 0.081 is P(X=3.5, Y=3.5)
print(dist.get_prob([1, 6], 4)) # 0.041 is P(Y=4) because X includes its whole domain
print(dist.get_prob(2.1, [1, 4])) # 0.206 is P(X=2.1, Y in [1, 4])

Example 4

Suppose that we have a Discrete Joint variable with a specific PMF.

from pprobs.distribution import Joint

def pmf(x, y):
  if x > 1:
    return 1 / (x * y)
  return 0

dist = Joint(pmf, range(1, 6), range(6, 10)) # The second and third are the sample space of our PMF

print(dist.probability_table()) 

Output:

X/Y Y=6 Y=7 Y=8 Y=9
X=1 0.000000 0.000000 0.000000 0.000000
X=2 0.083333 0.071429 0.062500 0.055556
X=3 0.055556 0.047619 0.041667 0.037037
X=4 0.041667 0.035714 0.031250 0.027778
X=5 0.033333 0.028571 0.025000 0.022222
print(dist.get_prob(2, range(6, 10))) # 0.272 is P(X=2)
print(dist.get_prob(2, 6)) # 0.083 is P(X=2, Y=6)

Thank you if giving a star me on Github. https://github.com/mokar2001

Owner
Mohamadreza Kariminejad
I am interested in AI, Backend Development, and Mathematics.
Mohamadreza Kariminejad
Experimental proxy for dumping the unencrypted packet data from Brawl Stars (WIP)

Brawl Stars Proxy Experimental proxy for version 39.99 of Brawl Stars. It allows you to capture the packets being sent between the Brawl Stars client

4 Oct 29, 2021
A small program to vote for Councilors at 42 Heilbronn.

This Docker container is build to run on server an provide an easy to use interface for every student to vote for their councillors. To run docker on

Kevin Hirsig 2 Jan 17, 2022
YourCity is a platform to match people to their prefect city.

YourCity YourCity is a city matching App that matches users to their ideal city. It is a fullstack React App made with a Redux state manager and a bac

Nico G Pierson 6 Sep 25, 2021
BinCat is an innovative login system, with which the account you register will be more secure.

BinCat is an innovative login system, with which the account you register will be more secure. This project is inspired by a conventional token system.

Hipotesi 2 May 22, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Apache Superset out of box version(Windows 64-bit)

superset_app Apache Superset out of box version (Windows 64bit) prepare job download 3 files python-3.8.10-embed-amd64.zip get-pip.py python_geohash‑0

Steven Lee 9 Oct 02, 2022
Pacman - A suite of tools for manipulating debian packages

Overview Repository is a suite of tools for manipulating debian packages. At a h

Pardis Pashakhanloo 1 Feb 24, 2022
RFDesign - Protein hallucination and inpainting with RoseTTAFold

RFDesign: Protein hallucination and inpainting with RoseTTAFold Jue Wang (juewan

139 Jan 06, 2023
Datasets with Softcatalà website content

softcatala-web-dataset This repository contains Sofcatalà web site content (articles and programs descriptions). Dataset are available in the dataset

Softcatalà 2 Dec 26, 2021
Files for QMC Workshop 2021

QMC Workshop 2021 This repository contains the presented slides and example files for the Quantum Monte Carlo (QMC) Workshop 5 October - 23 November,

QMCPACK 39 Nov 04, 2022
This is a small Panel applet for the Budgie Desktop to display the battery charge of a connected Bluetooth device.

BudgieBluetoothBattery This is a small Panel applet for the Budgie Desktop to display the battery charge of a connected Bluetooth device. It uses the

Konstantin Köhring 7 Dec 05, 2022
Mommas-cookbook - A Repository About Mom's Recipes

Mommas Cookbook A Repository for Mom's Recipes Contents bacalhau à Gomes de Sá Beef-Rendang bacalhau à Gomes de Sá, recommended by @s0undt3ch One of t

1 Jan 08, 2022
A performant state estimator for power system

A state estimator for power system. Turbocharged with sparse matrix support, JIT, SIMD and improved ordering.

9 Dec 12, 2022
Apilytics for Python - Easy API analytics for Python backends

apilytics-python Installation Sign up and get your API key from https://apilytics.io - we offer a completely free trial with no credit card required!

Apilytics 6 Sep 29, 2022
Official repository for the BPF Performance Tools book

BPF Performance Tools This is the official repository of BPF (eBPF) tools from the book BPF Performance Tools: Linux and Application Observability. Th

Brendan Gregg 1.2k Dec 28, 2022
System Design Assignments as part of Arpit's System Design Masterclass

System Design Assignments The repository contains a set of problem statements around Software Architecture and System Design as conducted by Arpit's S

Relog 1.1k Jan 09, 2023
Freeze your objects in python

gelidum Freeze your objects in python. Latin English Caelum est hieme frigidum et gelidum; myrtos oleas quaeque alia assiduo tepore laetantur, asperna

Diego J. 51 Dec 22, 2022
The tool helps to find hidden parameters that can be vulnerable or can reveal interesting functionality that other hunters miss.

The tool helps to find hidden parameters that can be vulnerable or can reveal interesting functionality that other hunters miss. Greater accuracy is achieved thanks to the line-by-line comparison of

197 Nov 14, 2022
Taichi is a parallel programming language for high-performance numerical computations.

Taichi is a parallel programming language for high-performance numerical computations.

Taichi Developers 22k Jan 04, 2023
Домашние задания, выполненные на 3ем семестре РТУ МИРЭА, по дисциплине

ДЗ по курсу "Конфигурационное управление" в РТУ МИРЭА Описание В данном репозитории находятся домашние задания, выполненные на 3ем семестре РТУ МИРЭА,

Semyon Esaev 4 Dec 22, 2022