This is a library for simulate probability theory problems specialy conditional probability

Related tags

Miscellaneouspprobs
Overview

Introduction

This is a library for simulating probability theory problems, especially conditional probability. It is also useful to create a custom single or joint distribution with a specific PMF or PDF to get a probability table and generate data based on a probability function.

How to install?

pip install pprobs

Probability Simulator

It simulates probability theory problems, especially conditional probability.

Example 1

We want to get some information by defining some events.

  • P(A) = 0.3
  • P(B) = 0.2
  • P(A^B) = 0.1
  • A and B are dependent
  • P(A+B) = ? , P(A|B) = ?
from pprobs.simulation import Simulator

space = Simulator()

space.add_event('A', 0.3)
space.add_event('B', 0.2)
space.add_event('A^B', 0.1)

prob_1 = space.get_prob('A+B') # A+B means union of A and B
prob_2 = space.get_prob('A|B')

print(prob_1, prob_2) # 0.4  0.5

Example 2

In a group of 100 sports car buyers, 40 bought alarm systems, 30 purchased bucket seats, and 20 purchased an alarm system and bucket seats. If a car buyer chosen at random bought an alarm system, what is the probability they also bought bucket seats?

By Statisticshowto

  • P(SEAT) = 0.3
  • P(ALARM) = 0.4
  • P(SEAT ^ ALARM) = 0.2
  • P(SEAT | ALARAM) = ?
from pprobs.simulation import Simulator

space = Simulator()

space.add_event('SEAT', 0.3).add_event('ALARM', 0.4) # We can also add events sequentially in a line (chaining) 
space.add_event('SEAT^ALARM', 0.2) # A^B means intersection of A & B

print(space.get_prob('SEAT|ALARM')) # 0.5

Example 3

Totaly 1% of people have a certain genetic defect.90% of tests for the gene detect the defect (true positives). 9.6% of the tests are false positives. If a person gets a positive test result, what are the odds they actually have the genetic defect?

By Statisticshowto

  • P(GEN_DEF) = 0.01
  • P(POSITIVE|GEN_DEF) = 0.9
  • P(POSITIVE|GEN_DEF!) = 0.096
  • P(GEN_DEF|POSITIVE) = ?
space = Simulator()

space.add_event('GEN_DEF', 0.01)
space.add_event('POSITIVE|GEN_DEF', 0.9) # A|B means A given B
space.add_event('POSITIVE|GEN_DEF!', 0.096) # A! means complement of A

print(space.get_prob('GEN_DEF|POSITIVE')) # 0.0865

Example 4

Bob has an important meeting tomorrow and he has to reach the office on time in the morning. His general mode of transport is by car and on a regular day (no car trouble) the probability that he will reach on time is 0.3. The probability that he might have car trouble is 0.2. If the car runs into trouble he will have to take a train and only 2 trains out of the available 10 trains will get him to the office on time.

By Hackerearth

  • P(ON_TIME|CAR_OK) = 0.3
  • P(ON_TIME|CAR_OK!) = 2/10 => Go by train
  • P(CAR_OK!) = 0.2
  • P(ON_TIME) = ?
space = Simulator()

space.add_event('ON_TIME|CAR_OK', 0.3)
space.add_event('ON_TIME|CAR_OK!', 2/10)
space.add_event('CAR_OK!', 0.2)

prob = space.get_prob('ON_TIME') # Probability of ON_TIME

print(prob) # 0.28

Distribution Simulator

It is useful to create a custom single or joint distribution with a specific PMF or PDF to get a probability table and generate data based on a probability function.

Example 1

Suppose that we have a discrete random variable with a specific PMF. We want to generate many data based on this variable. As you see in the second example 1 has the largest probability and duplicates more and 4 has the smallest probability and duplicates less.

from pprobs.distribution import Discrete

# First 
def pmf(x):
    return 1 / 6

dist = Discrete(pmf, [1, 2, 3, 4, 5, 6]) # The second is the sample space of our PMF

print(dist.generate(15)) # [4, 3, 1, 6, 5, 3, 5, 3, 5, 4, 2, 5, 6, 1, 6]


# Second
def pmf(x):
    return 1 / x

dist = Discrete(pmf, [1, 2, 3, 4])
print(dist.generate(15)) # [1, 2, 1, 1, 1, 4, 3, 1, 1, 3, 2, 4, 1, 2, 2]

Example 2

Suppose that we have a continuous random variable with a specific PDF.

from pprobs.distribution import Continuous

def pdf(x):
  if x > 1:
    return x / x ** 2
  return 0

dist = Continuous(pdf, [1, 6]) # The second is the sample interval of our PDF

print(dist.generate(15)) # [2.206896551724138, 4.103448275862069, ..., 5.655172413793104, 6.0]

Example 3

Suppose that we have a Continuous Joint variable with a specific PDF.

from pprobs.distribution import Joint

def pdf(x, y):
  if x > 1:
    return 1 / (x * y)
  return 0

dist = Joint(pdf, [1, 6], [3, 10]) # The second and third are the intervals of our PDF

print(dist.probability_table(force=20)) # if force gets more, many number will generate

Output:

X/Y x=3.0 X=3.7 ... X=10
X=1.0 0.000 0.000 ... 0.000
... ... ... ... ...
X=6.0 0.055 0.044 ... 0.016
print(dist.get_prob(3.5, 3.5)) # 0.081 is P(X=3.5, Y=3.5)
print(dist.get_prob([1, 6], 4)) # 0.041 is P(Y=4) because X includes its whole domain
print(dist.get_prob(2.1, [1, 4])) # 0.206 is P(X=2.1, Y in [1, 4])

Example 4

Suppose that we have a Discrete Joint variable with a specific PMF.

from pprobs.distribution import Joint

def pmf(x, y):
  if x > 1:
    return 1 / (x * y)
  return 0

dist = Joint(pmf, range(1, 6), range(6, 10)) # The second and third are the sample space of our PMF

print(dist.probability_table()) 

Output:

X/Y Y=6 Y=7 Y=8 Y=9
X=1 0.000000 0.000000 0.000000 0.000000
X=2 0.083333 0.071429 0.062500 0.055556
X=3 0.055556 0.047619 0.041667 0.037037
X=4 0.041667 0.035714 0.031250 0.027778
X=5 0.033333 0.028571 0.025000 0.022222
print(dist.get_prob(2, range(6, 10))) # 0.272 is P(X=2)
print(dist.get_prob(2, 6)) # 0.083 is P(X=2, Y=6)

Thank you if giving a star me on Github. https://github.com/mokar2001

Owner
Mohamadreza Kariminejad
I am interested in AI, Backend Development, and Mathematics.
Mohamadreza Kariminejad
A web project to control the daily life budget planing

Budget Planning - API In this repo there's only the API and Back-End of the this project. Install and run the project # install virtualenv --python=py

Leonardo Da Vinci 1 Oct 24, 2021
Entitlement AND Hardened Runtime Check

Python3 script for macOS to recursively check /Applications and also check /usr/local/bin, /usr/bin, and /usr/sbin for binaries with problematic/interesting entitlements. Also checks for hardened run

Cedric Owens 79 Nov 16, 2022
This is a simple web interface for SimplyTranslate

SimplyTranslate Web This is a simple web interface for SimplyTranslate List of Instances You can find a list of instances here: SimplyTranslate Projec

4 Dec 14, 2022
A place where the most basic, basic of python coding exists

python-basics A place where the most basic, basic of python coding exists As you can see, there are four folders and the best order to read is: appeti

Chuqin 2 Oct 05, 2022
Freeze your objects in python

gelidum Freeze your objects in python. Latin English Caelum est hieme frigidum et gelidum; myrtos oleas quaeque alia assiduo tepore laetantur, asperna

Diego J. 51 Dec 22, 2022
Retrying is an Apache 2.0 licensed general-purpose retrying library, written in Python, to simplify the task of adding retry behavior to just about anything.

Retrying Retrying is an Apache 2.0 licensed general-purpose retrying library, written in Python, to simplify the task of adding retry behavior to just

Ray Holder 1.9k Dec 29, 2022
Moji sends text and fun facts from different APIs wit da use of a notification deamon

Moji sends text and fun facts from different APIs wit da use of a notification deamon. Can be runned via dmenu or rofi.

kshly 2 Jan 12, 2022
A frontend to ease the use of pulseaudio's routing capabilities, mimicking voicemeeter's workflow

Pulsemeeter A frontend to ease the use of pulseaudio's routing capabilities, mimicking voicemeeter's workflow Features Create virtual inputs and outpu

Gabriel Carneiro 164 Jan 04, 2023
Interfaces between napari and pymeshlab library to allow import, export and construction of surfaces.

napari-pymeshlab Interfaces between napari and the pymeshlab library to allow import, export and construction of surfaces. This is a WIP and feature r

Zach Marin 4 Oct 12, 2022
Cloud Native sample microservices showcasing Full Stack Observability using AppDynamics and ThousandEyes

Cloud Native Sample Bookinfo App Observability Bookinfo is a sample application composed of four Microservices written in different languages.

Cisco DevNet 13 Jul 21, 2022
Blender addon that enables exporting of xmodels from blender. Great for custom asset creation for cod games

Birdman's XModel Tools For Blender Greetings everyone in the custom cod community. This blender addon should finally enable exporting of custom assets

wast 2 Jul 02, 2022
personal dotfiles for rolling release linux distros

dotfiles Screenshots: Directions: Deploy my dotfiles with yadm Packages from arch listed in .installed-packages Information on osu! see ~/Games/osu!/.

-pacer- 0 Sep 18, 2022
2021华为软件精英挑战赛 程序输出分析器

AutoGrader 0.2.0更新:加入资源分配溢出检测,如果发生资源溢出会输出溢出发生的位置。 如果通过检测,会显示通过符号 如果没有通过检测,会显示警告,并输出溢出发生的位置和操作

54 Aug 14, 2022
use Notepad++ for real-time sync after python appending new log text

FTP远程log同步工具 使用Notepad++配合来获取实时更新的log文档效果 适用于FTP协议的log远程同步工具,配合MT管理器开启FTP服务器使用,通过Notepad++监听文本变化,更便捷的使用电脑查看方法注入打印后的信息 功能 过滤器 对每行要打印的文本使用回调函数筛选,支持链式调用

Liuhaixv 1 Oct 17, 2021
LinkScope allows you to perform online investigations by representing information as discrete pieces of data, called Entities.

LinkScope Client Description This is the repository for the LinkScope Client Online Investigation software. LinkScope allows you to perform online inv

108 Jan 04, 2023
A python script developed to process Windows memory images based on triage type.

Overview A python script developed to process Windows memory images based on triage type. Requirements Python3 Bulk Extractor Volatility2 with Communi

CrowdStrike 245 Nov 24, 2022
Sigma coding youtube - This is a collection of all the code that can be found on my YouTube channel Sigma Coding.

Sigma Coding Tutorials & Resources YouTube • Facebook Support Sigma Coding Patreon • GitHub Sponsor • Shop Amazon Table of Contents Overview Topics Re

Alex Reed 927 Jan 08, 2023
Tugas kelompok Struktur Data

Binary-Tree Tugas kelompok Struktur Data Silahkan jika ingin mengubah tipe data pada operasi binary tree *Boleh juga semua program kelompok bisa disat

Usmar manalu 2 Nov 28, 2022
This script provides LIVE feedback for On-The-Fly data collection with RELION

README This script provides LIVE feedback for On-The-Fly data collection with RELION (very useful to explore already processed datasets too!) Creating

cryoEM CNIO 6 Jul 14, 2022
Solcast Integration for Home Assistant

Solcast Solar Home Assistant(https://www.home-assistant.io/) Component This custom component integrates the Solcast API into Home Assistant. Modified

Greg 45 Dec 20, 2022