TResNet: High Performance GPU-Dedicated Architecture

Overview

TResNet: High Performance GPU-Dedicated Architecture

PWC
PWC
PWC
PWC
PWC
PWC
PWC

paperV2 | pretrained models

Official PyTorch Implementation

Tal Ridnik, Hussam Lawen, Asaf Noy, Itamar Friedman, Emanuel Ben Baruch, Gilad Sharir
DAMO Academy, Alibaba Group

Abstract

Many deep learning models, developed in recent years, reach higher ImageNet accuracy than ResNet50, with fewer or comparable FLOPS count. While FLOPs are often seen as a proxy for network efficiency, when measuring actual GPU training and inference throughput, vanilla ResNet50 is usually significantly faster than its recent competitors, offering better throughput-accuracy trade-off. In this work, we introduce a series of architecture modifications that aim to boost neural networks' accuracy, while retaining their GPU training and inference efficiency. We first demonstrate and discuss the bottlenecks induced by FLOPs-optimizations. We then suggest alternative designs that better utilize GPU structure and assets. Finally, we introduce a new family of GPU-dedicated models, called TResNet, which achieve better accuracy and efficiency than previous ConvNets. Using a TResNet model, with similar GPU throughput to ResNet50, we reach 80.7% top-1 accuracy on ImageNet. Our TResNet models also transfer well and achieve state-of-the-art accuracy on competitive datasets such as Stanford cars (96.0%), CIFAR-10 (99.0%), CIFAR-100 (91.5%) and Oxford-Flowers (99.1%). They also perform well on multi-label classification and object detection tasks.

29/11/2021 Update - New article released, offering new classification head with state-of-the-art results

Checkout our new project, Ml-Decoder, which presents a unified classification head for multi-label, single-label and zero-shot tasks. Backbones with ML-Decoder reach SOTA results, while also improving speed-accuracy tradeoff.

23/4/2021 Update - ImageNet21K Pretraining

In a new article we released, we share pretrain weights for TResNet models from ImageNet21K training, that dramatically outperfrom standard pretraining. TResNet-M model, for example, improves its ImageNet-1K score, from 80.7% to 83.1% ! This kind of improvement is consistently achieved on all downstream tasks.

28/8/2020: V2 of TResNet Article Released

Sotabench Comparisons

Comparative results from sotabench benchamrk, demonstartaing that TReNset models give excellent speed-accuracy tradoff:

11/6/2020: V1 of TResNet Article Released

The main change - In addition to single label SOTA results, we also added top results for multi-label classification and object detection tasks, using TResNet. For example, we set a new SOTA record for MS-COCO multi-label dataset, surpassing the previous top results by more than 2.5% mAP !

Bacbkone mAP
KSSNet (previous SOTA) 83.7
TResNet-L 86.4

2/6/2020: CVPR-Kaggle competitions

We participated and won top places in two major CVPR-Kaggle competitions:

  • 2nd place in Herbarium 2020 competition, out of 153 teams.
  • 7th place in Plant-Pathology 2020 competition, out of 1317 teams.

    TResNet was a vital part of our solution for both competitions, allowing us to work on high resolutions and reach top scores while doing fast and efficient experiments.

Main Article Results

TResNet Models

TResNet models accuracy and GPU throughput on ImageNet, compared to ResNet50. All measurements were done on Nvidia V100 GPU, with mixed precision. All models are trained on input resolution of 224.

Models Top Training Speed
(img/sec)
Top Inference Speed
(img/sec)
Max Train Batch Size Top-1 Acc.
ResNet50 805 2830 288 79.0
EfficientNetB1 440 2740 196 79.2
TResNet-M 730 2930 512 80.8
TResNet-L 345 1390 316 81.5
TResNet-XL 250 1060 240 82.0

Comparison To Other Networks

Comparison of ResNet50 to top modern networks, with similar top-1 ImageNet accuracy. All measurements were done on Nvidia V100 GPU with mixed precision. For gaining optimal speeds, training and inference were measured on 90% of maximal possible batch size. Except TResNet-M, all the models' ImageNet scores were taken from the public repository, which specialized in providing top implementations for modern networks. Except EfficientNet-B1, which has input resolution of 240, all other models have input resolution of 224.

Model Top Training Speed
(img/sec)
Top Inference Speed
(img/sec)
Top-1 Acc. Flops[G]
ResNet50 805 2830 79.0 4.1
ResNet50-D 600 2670 79.3 4.4
ResNeXt50 490 1940 79.4 4.3
EfficientNetB1 440 2740 79.2 0.6
SEResNeXt50 400 1770 79.9 4.3
MixNet-L 400 1400 79.0 0.5
TResNet-M 730 2930 80.8 5.5


Transfer Learning SotA Results

Comparison of TResNet to state-of-the-art models on transfer learning datasets (only ImageNet-based transfer learning results). Models inference speed is measured on a mixed precision V100 GPU. Since no official implementation of Gpipe was provided, its inference speed is unknown

Dataset Model Top-1
Acc.
Speed
img/sec
Input
CIFAR-10 Gpipe 99.0 - 480
TResNet-XL 99.0 1060 224
CIFAR-100 EfficientNet-B7 91.7 70 600
TResNet-XL 91.5 1060 224
Stanford Cars EfficientNet-B7 94.7 70 600
TResNet-L 96.0 500 368
Oxford-Flowers EfficientNet-B7 98.8 70 600
TResNet-L 99.1 500 368

Reproduce Article Scores

We provide code for reproducing the validation top-1 score of TResNet models on ImageNet. First, download pretrained models from here.

Then, run the infer.py script. For example, for tresnet_m (input size 224) run:

python -m infer.py \
--val_dir=/path/to/imagenet_val_folder \
--model_path=/model/path/to/tresnet_m.pth \
--model_name=tresnet_m
--input_size=224

TResNet Training

Due to IP limitations, we do not provide the exact training code that was used to obtain the article results.

However, TResNet is now an integral part of the popular rwightman / pytorch-image-models repo. Using that repo, you can reach very similar results to the one stated in the article.

For example, training tresnet_m on rwightman / pytorch-image-models with the command line:

python -u -m torch.distributed.launch --nproc_per_node=8 \
--nnodes=1 --node_rank=0 ./train.py /data/imagenet/ \
-b=190 --lr=0.6 --model-ema --aa=rand-m9-mstd0.5-inc1 \
--num-gpu=8 -j=16 --amp \
--model=tresnet_m --epochs=300 --mixup=0.2 \
--sched='cosine' --reprob=0.4 --remode=pixel

gave accuracy of 80.5%.

Also, during the merge request, we had interesting discussions and insights regarding TResNet design. I am attaching a pdf version the mentioned discussions. They can shed more light on TResNet design considerations and directions for the future.

TResNet discussion and insights

(taken with permission from here)

Tips For Working With Inplace-ABN

See INPLACE_ABN_TIPS.

Citation

@misc{ridnik2020tresnet,
    title={TResNet: High Performance GPU-Dedicated Architecture},
    author={Tal Ridnik and Hussam Lawen and Asaf Noy and Itamar Friedman},
    year={2020},
    eprint={2003.13630},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Contact

Feel free to contact me if there are any questions or issues (Tal Ridnik, [email protected]).

Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021