TResNet: High Performance GPU-Dedicated Architecture

Overview

TResNet: High Performance GPU-Dedicated Architecture

PWC
PWC
PWC
PWC
PWC
PWC
PWC

paperV2 | pretrained models

Official PyTorch Implementation

Tal Ridnik, Hussam Lawen, Asaf Noy, Itamar Friedman, Emanuel Ben Baruch, Gilad Sharir
DAMO Academy, Alibaba Group

Abstract

Many deep learning models, developed in recent years, reach higher ImageNet accuracy than ResNet50, with fewer or comparable FLOPS count. While FLOPs are often seen as a proxy for network efficiency, when measuring actual GPU training and inference throughput, vanilla ResNet50 is usually significantly faster than its recent competitors, offering better throughput-accuracy trade-off. In this work, we introduce a series of architecture modifications that aim to boost neural networks' accuracy, while retaining their GPU training and inference efficiency. We first demonstrate and discuss the bottlenecks induced by FLOPs-optimizations. We then suggest alternative designs that better utilize GPU structure and assets. Finally, we introduce a new family of GPU-dedicated models, called TResNet, which achieve better accuracy and efficiency than previous ConvNets. Using a TResNet model, with similar GPU throughput to ResNet50, we reach 80.7% top-1 accuracy on ImageNet. Our TResNet models also transfer well and achieve state-of-the-art accuracy on competitive datasets such as Stanford cars (96.0%), CIFAR-10 (99.0%), CIFAR-100 (91.5%) and Oxford-Flowers (99.1%). They also perform well on multi-label classification and object detection tasks.

29/11/2021 Update - New article released, offering new classification head with state-of-the-art results

Checkout our new project, Ml-Decoder, which presents a unified classification head for multi-label, single-label and zero-shot tasks. Backbones with ML-Decoder reach SOTA results, while also improving speed-accuracy tradeoff.

23/4/2021 Update - ImageNet21K Pretraining

In a new article we released, we share pretrain weights for TResNet models from ImageNet21K training, that dramatically outperfrom standard pretraining. TResNet-M model, for example, improves its ImageNet-1K score, from 80.7% to 83.1% ! This kind of improvement is consistently achieved on all downstream tasks.

28/8/2020: V2 of TResNet Article Released

Sotabench Comparisons

Comparative results from sotabench benchamrk, demonstartaing that TReNset models give excellent speed-accuracy tradoff:

11/6/2020: V1 of TResNet Article Released

The main change - In addition to single label SOTA results, we also added top results for multi-label classification and object detection tasks, using TResNet. For example, we set a new SOTA record for MS-COCO multi-label dataset, surpassing the previous top results by more than 2.5% mAP !

Bacbkone mAP
KSSNet (previous SOTA) 83.7
TResNet-L 86.4

2/6/2020: CVPR-Kaggle competitions

We participated and won top places in two major CVPR-Kaggle competitions:

  • 2nd place in Herbarium 2020 competition, out of 153 teams.
  • 7th place in Plant-Pathology 2020 competition, out of 1317 teams.

    TResNet was a vital part of our solution for both competitions, allowing us to work on high resolutions and reach top scores while doing fast and efficient experiments.

Main Article Results

TResNet Models

TResNet models accuracy and GPU throughput on ImageNet, compared to ResNet50. All measurements were done on Nvidia V100 GPU, with mixed precision. All models are trained on input resolution of 224.

Models Top Training Speed
(img/sec)
Top Inference Speed
(img/sec)
Max Train Batch Size Top-1 Acc.
ResNet50 805 2830 288 79.0
EfficientNetB1 440 2740 196 79.2
TResNet-M 730 2930 512 80.8
TResNet-L 345 1390 316 81.5
TResNet-XL 250 1060 240 82.0

Comparison To Other Networks

Comparison of ResNet50 to top modern networks, with similar top-1 ImageNet accuracy. All measurements were done on Nvidia V100 GPU with mixed precision. For gaining optimal speeds, training and inference were measured on 90% of maximal possible batch size. Except TResNet-M, all the models' ImageNet scores were taken from the public repository, which specialized in providing top implementations for modern networks. Except EfficientNet-B1, which has input resolution of 240, all other models have input resolution of 224.

Model Top Training Speed
(img/sec)
Top Inference Speed
(img/sec)
Top-1 Acc. Flops[G]
ResNet50 805 2830 79.0 4.1
ResNet50-D 600 2670 79.3 4.4
ResNeXt50 490 1940 79.4 4.3
EfficientNetB1 440 2740 79.2 0.6
SEResNeXt50 400 1770 79.9 4.3
MixNet-L 400 1400 79.0 0.5
TResNet-M 730 2930 80.8 5.5


Transfer Learning SotA Results

Comparison of TResNet to state-of-the-art models on transfer learning datasets (only ImageNet-based transfer learning results). Models inference speed is measured on a mixed precision V100 GPU. Since no official implementation of Gpipe was provided, its inference speed is unknown

Dataset Model Top-1
Acc.
Speed
img/sec
Input
CIFAR-10 Gpipe 99.0 - 480
TResNet-XL 99.0 1060 224
CIFAR-100 EfficientNet-B7 91.7 70 600
TResNet-XL 91.5 1060 224
Stanford Cars EfficientNet-B7 94.7 70 600
TResNet-L 96.0 500 368
Oxford-Flowers EfficientNet-B7 98.8 70 600
TResNet-L 99.1 500 368

Reproduce Article Scores

We provide code for reproducing the validation top-1 score of TResNet models on ImageNet. First, download pretrained models from here.

Then, run the infer.py script. For example, for tresnet_m (input size 224) run:

python -m infer.py \
--val_dir=/path/to/imagenet_val_folder \
--model_path=/model/path/to/tresnet_m.pth \
--model_name=tresnet_m
--input_size=224

TResNet Training

Due to IP limitations, we do not provide the exact training code that was used to obtain the article results.

However, TResNet is now an integral part of the popular rwightman / pytorch-image-models repo. Using that repo, you can reach very similar results to the one stated in the article.

For example, training tresnet_m on rwightman / pytorch-image-models with the command line:

python -u -m torch.distributed.launch --nproc_per_node=8 \
--nnodes=1 --node_rank=0 ./train.py /data/imagenet/ \
-b=190 --lr=0.6 --model-ema --aa=rand-m9-mstd0.5-inc1 \
--num-gpu=8 -j=16 --amp \
--model=tresnet_m --epochs=300 --mixup=0.2 \
--sched='cosine' --reprob=0.4 --remode=pixel

gave accuracy of 80.5%.

Also, during the merge request, we had interesting discussions and insights regarding TResNet design. I am attaching a pdf version the mentioned discussions. They can shed more light on TResNet design considerations and directions for the future.

TResNet discussion and insights

(taken with permission from here)

Tips For Working With Inplace-ABN

See INPLACE_ABN_TIPS.

Citation

@misc{ridnik2020tresnet,
    title={TResNet: High Performance GPU-Dedicated Architecture},
    author={Tal Ridnik and Hussam Lawen and Asaf Noy and Itamar Friedman},
    year={2020},
    eprint={2003.13630},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Contact

Feel free to contact me if there are any questions or issues (Tal Ridnik, [email protected]).

Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022