StrongSORT: Make DeepSORT Great Again

Overview

StrongSORT

StrongSORT: Make DeepSORT Great Again

MOTA-IDF1-HOTA

StrongSORT: Make DeepSORT Great Again

Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao

arxiv 2202.13514

Abstract

Existing Multi-Object Tracking (MOT) methods can be roughly classified as tracking-by-detection and joint-detection-association paradigms. Although the latter has elicited more attention and demonstrates comparable performance relative to the former, we claim that the tracking-by-detection paradigm is still the optimal solution in terms of tracking accuracy. In this paper, we revisit the classic tracker DeepSORT and upgrade it from various aspects, i.e., detection, embedding and association. The resulting tracker, called StrongSORT, sets new HOTA and IDF1 records on MOT17 and MOT20. We also present two lightweight and plug-and-play algorithms to further refine the tracking results. Firstly, an appearance-free link model (AFLink) is proposed to associate short tracklets into complete trajectories. To the best of our knowledge, this is the first global link model without appearance information. Secondly, we propose Gaussian-smoothed interpolation (GSI) to compensate for missing detections. Instead of ignoring motion information like linear interpolation, GSI is based on the Gaussian process regression algorithm and can achieve more accurate localizations. Moreover, AFLink and GSI can be plugged into various trackers with a negligible extra computational cost (591.9 and 140.9 Hz, respectively, on MOT17). By integrating StrongSORT with the two algorithms, the final tracker StrongSORT++ ranks first on MOT17 and MOT20 in terms of HOTA and IDF1 metrics and surpasses the second-place one by 1.3 - 2.2. Code will be released soon.

vs. SOTA

comparison

Data&Model Preparation

  1. Download MOT17 & MOT20 from the official website.

    path_to_dataset/MOTChallenge
    ├── MOT17
    	│   ├── test
    	│   └── train
    └── MOT20
        ├── test
        └── train
    
  2. Download our prepared data

    path_to_dataspace
    ├── AFLink_epoch20.pth  # checkpoints for AFLink model
    ├── MOT17_ECC_test.json  # CMC model
    ├── MOT17_ECC_val.json  # CMC model
    ├── MOT17_test_YOLOX+BoT  # detections + features
    ├── MOT17_test_YOLOX+simpleCNN  # detections + features
    ├── MOT17_trainval_GT_for_AFLink  # GT to train and eval AFLink model
    ├── MOT17_val_GT_for_TrackEval  # GT to eval the tracking results.
    ├── MOT17_val_YOLOX+BoT  # detections + features
    ├── MOT17_val_YOLOX+simpleCNN  # detections + features
    ├── MOT20_ECC_test.json  # CMC model
    ├── MOT20_test_YOLOX+BoT  # detections + features
    ├── MOT20_test_YOLOX+simpleCNN  # detections + features
    
  3. Set the paths of your dataset and other files in "opts.py", i.e., root_dataset, path_AFLink, dir_save, dir_dets, path_ECC.

Requirements

  • Python3.6
  • torch 1.7.0 + torchvision 0.8.0

Tracking

  • Run DeepSORT on MOT17-val

    python strong_sort.py MOT17 val
  • Run StrongSORT on MOT17-val

    python strong_sort.py MOT17 val --BoT --ECC --NSA --EMA --MC --woC
  • Run StrongSORT++ on MOT17-val

    python strong_sort.py MOT17 val --BoT --ECC --NSA --EMA --MC --woC --AFLink --GSI
  • Run StrongSORT++ on MOT17-test

    python strong_sort.py MOT17 test --BoT --ECC --NSA --EMA --MC --woC --AFLink --GSI
  • Run StrongSORT++ on MOT20-test

    python strong_sort.py MOT20 val --BoT --ECC --NSA --EMA --MC --woC --AFLink --GSI

Note

  • To evaluate the tracking results, we recommend using the official code.
  • You can also try to apply AFLink and GSI to other trackers.
  • Tuning the hyperparameters carefully would brings better performance.

Citation

@misc{2202.13514,
Author = {Yunhao Du and Yang Song and Bo Yang and Yanyun Zhao},
Title = {StrongSORT: Make DeepSORT Great Again},
Year = {2022},
Eprint = {arXiv:2202.13514},
}

Acknowledgement

A large part of the codes, ideas and results are borrowed from DeepSORT, JDE, YOLOX and ByteTrack. Thanks for their excellent work!

Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien

hata 1.1k Dec 18, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022