StrongSORT: Make DeepSORT Great Again

Overview

StrongSORT

StrongSORT: Make DeepSORT Great Again

MOTA-IDF1-HOTA

StrongSORT: Make DeepSORT Great Again

Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao

arxiv 2202.13514

Abstract

Existing Multi-Object Tracking (MOT) methods can be roughly classified as tracking-by-detection and joint-detection-association paradigms. Although the latter has elicited more attention and demonstrates comparable performance relative to the former, we claim that the tracking-by-detection paradigm is still the optimal solution in terms of tracking accuracy. In this paper, we revisit the classic tracker DeepSORT and upgrade it from various aspects, i.e., detection, embedding and association. The resulting tracker, called StrongSORT, sets new HOTA and IDF1 records on MOT17 and MOT20. We also present two lightweight and plug-and-play algorithms to further refine the tracking results. Firstly, an appearance-free link model (AFLink) is proposed to associate short tracklets into complete trajectories. To the best of our knowledge, this is the first global link model without appearance information. Secondly, we propose Gaussian-smoothed interpolation (GSI) to compensate for missing detections. Instead of ignoring motion information like linear interpolation, GSI is based on the Gaussian process regression algorithm and can achieve more accurate localizations. Moreover, AFLink and GSI can be plugged into various trackers with a negligible extra computational cost (591.9 and 140.9 Hz, respectively, on MOT17). By integrating StrongSORT with the two algorithms, the final tracker StrongSORT++ ranks first on MOT17 and MOT20 in terms of HOTA and IDF1 metrics and surpasses the second-place one by 1.3 - 2.2. Code will be released soon.

vs. SOTA

comparison

Data&Model Preparation

  1. Download MOT17 & MOT20 from the official website.

    path_to_dataset/MOTChallenge
    ├── MOT17
    	│   ├── test
    	│   └── train
    └── MOT20
        ├── test
        └── train
    
  2. Download our prepared data

    path_to_dataspace
    ├── AFLink_epoch20.pth  # checkpoints for AFLink model
    ├── MOT17_ECC_test.json  # CMC model
    ├── MOT17_ECC_val.json  # CMC model
    ├── MOT17_test_YOLOX+BoT  # detections + features
    ├── MOT17_test_YOLOX+simpleCNN  # detections + features
    ├── MOT17_trainval_GT_for_AFLink  # GT to train and eval AFLink model
    ├── MOT17_val_GT_for_TrackEval  # GT to eval the tracking results.
    ├── MOT17_val_YOLOX+BoT  # detections + features
    ├── MOT17_val_YOLOX+simpleCNN  # detections + features
    ├── MOT20_ECC_test.json  # CMC model
    ├── MOT20_test_YOLOX+BoT  # detections + features
    ├── MOT20_test_YOLOX+simpleCNN  # detections + features
    
  3. Set the paths of your dataset and other files in "opts.py", i.e., root_dataset, path_AFLink, dir_save, dir_dets, path_ECC.

Requirements

  • Python3.6
  • torch 1.7.0 + torchvision 0.8.0

Tracking

  • Run DeepSORT on MOT17-val

    python strong_sort.py MOT17 val
  • Run StrongSORT on MOT17-val

    python strong_sort.py MOT17 val --BoT --ECC --NSA --EMA --MC --woC
  • Run StrongSORT++ on MOT17-val

    python strong_sort.py MOT17 val --BoT --ECC --NSA --EMA --MC --woC --AFLink --GSI
  • Run StrongSORT++ on MOT17-test

    python strong_sort.py MOT17 test --BoT --ECC --NSA --EMA --MC --woC --AFLink --GSI
  • Run StrongSORT++ on MOT20-test

    python strong_sort.py MOT20 val --BoT --ECC --NSA --EMA --MC --woC --AFLink --GSI

Note

  • To evaluate the tracking results, we recommend using the official code.
  • You can also try to apply AFLink and GSI to other trackers.
  • Tuning the hyperparameters carefully would brings better performance.

Citation

@misc{2202.13514,
Author = {Yunhao Du and Yang Song and Bo Yang and Yanyun Zhao},
Title = {StrongSORT: Make DeepSORT Great Again},
Year = {2022},
Eprint = {arXiv:2202.13514},
}

Acknowledgement

A large part of the codes, ideas and results are borrowed from DeepSORT, JDE, YOLOX and ByteTrack. Thanks for their excellent work!

Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021