Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Related tags

Deep Learningtutorial
Overview

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Jupyter Book Badge

About the book

This is a web book written for a tutorial session of the 22nd International Society for Music Information Retrieval Conference, Nov 8-12, 2021, in an online format. The ISMIR conference is the world’s leading research forum on processing, searching, organising and accessing music-related data.

Motivation

Lower the barrier: As deep learning emerges, music classification research has entered a new phase, and many data-driven approaches have been proposed to solve the problem. However, researchers sometimes use jargon in various ways. Also, some implementation details and evaluation methods are ambiguously described in the papers, blocking access to the information without personal contact. These are tremendous obstacles when new researchers want to dive into this fascinating research area. Through this book, we would like to lower the barrier for newcomers and reduce miscommunication between researchers by sharing the secrets.

Cope with data issue: Another issue that we are facing under the deep learning era is the exhaustion of labeled data. Labeling musical attributes requires strong domain knowledge and a significant amount of time for listening; hence expensive. Because of this, deep learning researchers started actively utilizing large-scale unlabeled data. This book introduces the recent advances in semi- and self-supervised learning that enables music classification models to step further beyond supervised learning.

Narrow the gap: Music classification has been applied to solve real-world problems successfully. However, some important procedures and considerations for real-world applications are rarely discussed as research topics. In this book, based on the various industry experiences of the authors, we try our best to raise the awareness of these questions and provide answers and perspectives. We hope this helps academia and industries harmonize better together.

About the authors

Minz Won is a Ph.D candidate at the Music Technology Group (MTG) of Universitat Pompeu Fabra in Barcelona, Spain. His research focus is music representation learning. Along with his academic career, he has put his knowledge into practice with industry internships at Kakao Corp., Naver Corp., Pandora, Adobe, and he recently joined ByteDance as a research scientist. He contributed to the winning entry in the WWW 2018 Challenge: Learning to Recognize Musical Genre.

Janne Spijkervet graduated from the University of Amsterdam in 2021 with her Master's thesis titled "Contrastive Learning of Musical Representations". The paper with the same title was published in 2020 on self-supervised learning on raw audio in music tagging. She has started at ByteDance as a research scientist (2020 - present), developing generative models for music creation. She is also a songwriter and music producer, and explores the design and use of machine learning technology in her music.

Keunwoo Choi is a senior research scientist at ByteDance, developing machine learning products for music recommendation and discovery. He received a Ph.D degree from Queen Mary University of London (c4dm) in 2018. As a researcher, he also has been working at Spotify (2018 - 2020) and several other music companies as well as open-source projects such as Kapre, librosa, and torchaudio. He also writes some music.

Citing this book

@book{musicclassification:book,
	Author = {Minz Won, Janne Spijkervet, and Keunwoo Choi},
	Month = Nov.,
	Publisher = {https://music-classification.github.io/tutorial},
	Title = {Music Classification: Beyond Supervised Learning, Towards Real-world Applications},
	Year = 2021,
	Url = {https://music-classification.github.io/tutorial}
}
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022