IA for recognising Traffic Signs using Keras [Tensorflow]

Overview

Traffic Signs Recognition ⚠️ 🚦

Fundamentals of Intelligent Systems

Introduction 📄

Development of a neural network capable of recognizing nine different danger warning traffic signs.

  1. Sign P-50. Other dangers.
  2. Signal P-14b. Dangerous curves to the left.
  3. Sign P-20. Pedestrians.
  4. Sign P-19. Slippery pavement.
  5. Sign P-18. Works.
  6. Signal P-3. Traffic lights.
  7. Sign P-15a. Highlight.
  8. Sign P-1. Intersection with priority.
  9. Signal P-24. Passage of animals in freedom.

Screenshot 2022-01-09 at 20 48 42

Datasets 📁

The images, both for the training set and for the validation set, have been extracted from several datasets, the most notable being the GTSRB (German Traffic Sign Recognition Benchmark) dataset: https://www.kaggle.com/meowmeowmeowmeowmeow/gtsrb -german-traffic-sign

In addition, self-made images have been added.

Data Augmentation

Data augmentation has been performed on the training set, to obtain new images from those already present. To do this, we have used various parameters such as rotation angle, cut angle, among others, in the ImageDataGenerator class

Additional Information

All the implementation details are in the memory that we have made, which can be read from the following link: https://github.com/nahimaort/Traffic-Signs-Recognition/blob/main/Memoria.pdf In this document, the hyperparameters that have been used are detailed, as well as those that we have tested. Also, the concept of Categorical Cross Entropy is explained, and how this loss function works

Authors ✒️

Base code provided by Cayetano Guerra Artal

Owner
Sebastián Fernández García
I am currently studying a bachelor's degree in computer engineering. My interests range from cryptography, through audiovisual creations to AI
Sebastián Fernández García
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022