Multi View Stereo on Internet Images

Overview

Evaluating MVS in a CPC Scenario

This repository contains the set of artficats used for the ENGN8601/8602 research project. The thesis emphasizes on the following aspects:

  • Evaluating and Analysing the performance of existing learning-based MVS networks on internet images or in a CPC scenario.
  • Proposing a novel mask estimation module and depth estimation (with depth alignment) framework to estimate depth values of foreground objects.
  • Fusing the depthmaps estimated by the proposed methodology to compute complete point clouds (including foreground objects)

Installation

Recommended: python 3.7.7, cudatoolkit 10.2.* and conda.

The python libraries required are provided in the requirements.txt file. You can install the environment and necessary modules as follows or use your own approach:

Create a new conda environment and activate it:

conda create -n mvs
conda activate mvs

Install requirements.txt and opencv & pytorch separately (make sure pip is installed):

pip install -r requirements.txt
pip install opencv-python
pip install torch==1.8.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html

Data

Download the validation dataset extracted from MegaDepth dataset here and extract the all the images from the dataset to ref_images folder as subdirectories (create ref_images if it doesn't exist).

Usage

All the results have been included in the downloaded dataset already for ease of access to the results. The directory structure is given and explained as follows. The image subdirectories include reference images, npy files containing camera information, entropies, depthmaps (monocular, estimated and ground truth) etc.

  • All the images inside the ref_images directory contain a grid_outputs subdirectory which contain the best masks estimated for the reference image. This subdirectory also contains the plots with the .npy files for visualization.
  • All the images inside the ref_images directory contain ply and ply_gt subdirectories, which contain the 3D world points and .ply files depicting the estimated point cloud of that scene reconstructed by the proposed method.
  • The final_fused_scenes folder contains the point cloud generated by fusing multiple depthmaps obtained from different views of the same scene.

NOTE: You do not need to run the following steps in a sequence since required intermediate results are already provided in the images (such as entropy maps etc.), you can run any step directly.

1. Mask Estimation

Open the terminal and run the following command:

python masking.py

The 10 best masks with lowest binary cross entropy loss and IoU for each reference image is computed and saved inside a grid_outputs subdirectory inside each image directory. You can view the mask visualizations which are saved as .png. The masks are also saved as .npy files.

2. Calculating Error Metrics

To calculate the EPE, 1px and 3px errors between the estimated depthmaps and ground truth depthmaps, run the following command:

python calc_errors.py

3. 3D Reconstruction - Individual Point Clouds

To reconstruct ground truth point clouds and the estimated point clouds with foreground objects for each individual reference image, run the following command:

python pfm2ply_aligned.py                   # Point Clouds from Estimated Depthmaps (with foreground)
python pfm2ply_aligned_gt.py                # Point Clouds from Ground Truth Depthmaps

The point clouds will be saved in the ply and ply_gt image subdirectories respectively as .ply files along with the vertices of these point clouds saved as vertices.npy. This also generates the aligned absolute depthmap and saves the visualization along with the monocular depthmap estimated via the monocular depth estimation network inside the image directories.

4. Generating Scene Point Clouds

Since step 3 comptues individual point clouds, the next task is to merge the vertices of each individual point cloud to generate the point cloud for an entire scene. Run the following command:

python merge2ply.py

You can specify the set of images to be used for reconstructing each scene by editing the merge2ply file. All the scene point clouds are saved in final_fused_scenes folder.

Visualizations of Outputs

1. Mask Estimation

masks

2. 3D Reconstruction of Invidiual Depthmaps

3dr

3. Merged Point Clouds

3dr scenes

Supporting Repositories

I would like to give credit to the following repositories for assisting me in computing intermediate results necessary for the thesis:

Thank you!

Owner
Namas Bhandari
Machine Learning/Deep Learning/AI Enthusiast
Namas Bhandari
Organize seu linux - organize your linux

OrganizeLinux Organize seu linux - organize your linux Organize seu linux Uma forma rápida de separar arquivos dispersos em pastas. formatos a serem c

Marcus Vinícius Ribeiro Andrade 1 Nov 30, 2021
This repository provides a set of easy to understand and tested Python samples for using Acronis Cyber Platform API.

Base Acronis Cyber Platform API operations with Python !!! info Copyright © 2019-2021 Acronis International GmbH. This is distributed under MIT licens

Acronis International GmbH 3 Aug 11, 2022
Package to provide translation methods for pyramid, and means to reload translations without stopping the application

Package to provide translation methods for pyramid, and means to reload translations without stopping the application

Grzegorz Śliwiński 4 Nov 20, 2022
Fixed waypoint(pose) navigation for turtlebot simulation.

Turtlebot-NavigationStack-Fixed-Waypoints fixed waypoint(pose) navigation for turtlebot simulation. Task Details Task Permformed using Navigation Stac

Shanmukha Vishnu 1 Apr 08, 2022
Unfinished Python library based on ndspy, for Zelda: Phantom Hourglass and Spirit Tracks.

zed An unfinished library and toolset by me, for viewing and editing files from The Legend of Zelda: Phantom Hourglass and The Legend of Zelda: Spirit

4 Oct 13, 2022
Kubernetes-native workflow automation platform for complex, mission-critical data and ML processes at scale. It has been battle-tested at Lyft, Spotify, Freenome, and others and is truly open-source.

Flyte Flyte is a workflow automation platform for complex, mission-critical data, and ML processes at scale Home Page · Quick Start · Documentation ·

Flyte 3k Jan 01, 2023
Sathal's Python Projects Repository

Sathal's Python Projects Repository Purpose and Motivation I come from a mainly C Programming Language background and have previous classroom experien

Sam 1 Oct 20, 2021
Semester long, web application project for CSCI 4370/6370 (Database Management)

Database_Project Prototype ideas for website: Computer Science library (Sells books, products, etc.) Code editor Graph visualizer / creator (can save

Jordan Harman 4 Feb 17, 2022
Demo of patching a python context manager

patch-demo-20211203 demo of patching a python context manager poetry install poetry run python -m my_great_app to run the code poetry run pytest to te

Brad Smith 1 Feb 09, 2022
Auto-ropper is a tool that aims to automate the exploitation of ROP.

Auto-ropper is a tool that aims to automate the exploitation of ROP. Its goal is to become a tool that no longer requires user interaction.

Zerotistic 16 Nov 13, 2022
VCC-Generator is a python script that generate VCC for testing purposes only

VCC-Generator is a python script that generate VCC for testing purposes only

Spider Anongreyhat 10 Oct 23, 2022
B-Pkg is a simple tool in python for installing all basic package in termux

Basic-Pkg 👉🏻 Basic-Pkg 👈🏻 B-Pkg is a simple tool in python for installing all basic package in termux This is my first tool, I hope you will like

Macgaiver 3 Oct 21, 2021
Binary++ is an esoteric programming language based on* binary

Binary++ is an esoteric programming language based on* binary. * It's meant to be based on binary, but you can write Binary++ code using different mea

Supercolbat 3 Feb 18, 2022
One destination for all the developer's learning resources.

DevResources One destination for all the developer's learning resources. Find all of your learning resources under one roof and add your own. Live ✨ Y

Gaurav Sharma 33 Oct 21, 2022
Fluxos de captura e subida de dados no datalake da Prefeitura do Rio de Janeiro.

Pipelines Este repositório contém fluxos de captura e subida de dados no datalake da Prefeitura do Rio de Janeiro. O repositório é gerido pelo Escritó

Prefeitura do Rio de Janeiro 19 Dec 15, 2022
Start and stop your NiceHash miners using this script.

NiceHash Mining Scheduler Use this script to schedule your NiceHash Miner(s). Electricity costs between 4-9pm are high in my area and I want NiceHash

SeaRoth 2 Sep 30, 2022
Collection of script & resources for Foundry's Nuke software.

Author: Liam Collod. Collections of scripting stuff I wrote for Foundry's Nuke software. Utilisation You can have a look at the README.md file in each

Liam Collod 1 May 14, 2022
A repository for all ZenML projects that are specific production use-cases.

ZenFiles Original Image source: https://www.goodfon.com/wallpaper/x-files-sekretnye-materialy.html And naturally, all credits to the awesome X-Files s

ZenML 66 Jan 06, 2023
Catalogue CRUD Application

This Python program creates a relational SQL database hosted on the Snowflake platform, then opens a CRUD GUI to manipulate and view the data. In this application, it is used as a book catalogue. CUR

0 Dec 13, 2022
NORETURN is an esoteric programming language, based around the idea of not going back

NORETURN NORETURN is an esoteric programming language, based around the idea of not going back Concept Program coded in noreturn runs over one array,

1 Dec 15, 2021