Python3 to Crystal Translation using Python AST Walker

Related tags

Text Data & NLPpy2cr
Overview

py2cr.py

A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.python.org/3/library/ast.html) for more information.

Status

Currently more than 80% of the relevant tests are passing. See more information below.

Installation

Execute the following:

pip install py2cr

or

git clone git://github.com/nanobowers/py2cr.git

Versions

  • Python 3.6 .. 3.9
  • Crystal 1.1+

Dependencies

Python

pip install pyyaml

# Probably not needed for much longer since py2 support is going to be removed.
pip install six 

# Probably not really needed since there is no crystal equivalent
pip install numpy

Crystal

currently there are no external dependencies

Methodology

In addition to walking and writing the AST tree and writing a Crystal syntax output, this tool either:

  • Monkey-patches some common Crystal stdlib Structs/Classes in order to emulate the Python equivalent functionality.
  • Calls equivalent Crystal methods to the Python equivalent
  • Calls wrapped Crystal methods that provide Python equivalent functionality

Usage

Generally, py2cr.py somefile.py > somefile.cr

There is a Crystal shim/wrapper library in src/py2cr (and linked into lib/py2cr) that is also referenced in the generated script. You may need to copy that as needed, though eventually it may be appropriate to convert it to a shard if that is more appropriate.

Example

TODO

Tests

$ ./run_tests.py

Will run all tests that are supposed to work. If any test fails, its a bug. (Currently there are a lot of failing tests!!)

$ ./run_tests.py -a

Will run all tests including those that are known to fail (currently). It should be understandable from the output.

$ ./run_tests.py basic

Will run all tests matching basic. Useful because running the entire test-suite can take a while.

$ ./run_tests.py -x or $ ./run_tests.py --no-error

Will run tests but ignore if an error is raised by the test. This is not affecting the error generated by the test files in the tests directory.

For additional information on flags, run:

./run_tests.py -h

Writing new tests

Adding tests for most new or existing functionality involves adding additional python files at tests/ .py .

The test-runner scripts will automatically run py2cr to produce a Crystal script, then run both the Python and Crystal scripts, then compare stdout/stderr and check return codes.

For special test-cases, it is possible to provide a configuration YAML file on a per test basis named tests/ / .config.yaml which overrides defaults for testing. The following keys/values are supported:

min_python_version: [int, int] # minimum major/minor version
max_python_version: [int, int] # maximum major/minor version
expected_exit_status: int      # exit status for py/cr test script
argument_list: [str, ... str]  # list of strings as extra args for argv

Typing

Some amount of typing support in Python is translated to Crystal. Completely untyped Python code in many cases will not be translatable to compilable Crystal. Rudimentary for python Optional and Union should convert appropriately to Crystal typing.

Some inference of bare list/dict types can now convert to [] of X and {} of X, however set and tuple may not work properly.

Status

This is incomplete and many of the tests brought forward from py2rb do not pass. Some of them may never pass as-is due to significant language / compilation differences (even moreso than Python vs. Ruby)

To some extent, it will always be incomplete. The goal is to cover common cases and reduce the additional work to minimum-viable-program.

Limitations

  • Many Python run-time exceptions are not translatable into Crystal as these issues manifest in Crystal as compile-time errors.
  • A significant portion of python code is untyped and may not translate properly in places where Crystal demands type information.
    • e.g. Crystal Lambda function parameters require typing and this is very uncommon in Python, though may be possible with Callable[] on the python side.
  • Python importing is significantly different than Crystal and thus may not ever map well.
  • Numpy and Unittest which are common in Python don't have equivalents in Crystal. With some significant additional work, converting tests into Spec format may be possible via https://github.com/jaredbeck/minitest_to_rspec as a guide

To-do

  • Remove python2/six dependencies to reduce clutter. Py2 has been end-of-lifed for a while now.
  • Remove numpy dependencies unless/until a suitable target for Crystal can be identified
  • Add additional Crystal shim methods to translate common python3 stdlib methods. Consider a mode that just maps to a close Crystal method rather than using a shim-method to reduce the python-ness.
  • Refactor the code-base. Most of it is in the __init__.py
  • Add additional unit-tests
  • Multi-thread the test-suite so it can run faster.

Contribute

Free to submit an issue. This is very much a work in progress, contributions or constructive feedback is welcome.

If you'd like to hack on py2cr, start by forking the repo on GitHub:

https://github.com/nanobowers/py2cr

Contributing

The best way to get your changes merged back into core is as follows:

  1. Fork it (https://github.com/nanobowers/py2cr/fork)
  2. Create a thoughtfully named topic branch to contain your change (git checkout -b my-new-feature)
  3. Hack away
  4. Add tests and make sure everything still passes by running crystal spec
  5. If you are adding new functionality, document it in the README
  6. If necessary, rebase your commits into logical chunks, without errors
  7. Commit your changes (git commit -am 'Add some feature')
  8. Push to the branch (git push origin my-new-feature)
  9. Create a new Pull Request

License

MIT, see the LICENSE file for exact details.

Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
NLP tool to extract emotional phrase from tweets 🤩

Emotional phrase extractor Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in the

Shahul ES 38 Oct 17, 2022
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
The PyTorch based implementation of continuous integrate-and-fire (CIF) module.

CIF-PyTorch This is a PyTorch based implementation of continuous integrate-and-fire (CIF) module for end-to-end (E2E) automatic speech recognition (AS

Minglun Han 24 Dec 29, 2022
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Fortalice Solutions, LLC 78 Dec 12, 2022
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

Amazon 69 Jan 03, 2023
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
Sequence-to-Sequence Framework in PyTorch

nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au

LIUM 395 Nov 21, 2022