Tools for exploratory data analysis in Python

Overview

Dora

Exploratory data analysis toolkit for Python.

Contents

Summary

Dora is a Python library designed to automate the painful parts of exploratory data analysis.

The library contains convenience functions for data cleaning, feature selection & extraction, visualization, partitioning data for model validation, and versioning transformations of data.

The library uses and is intended to be a helpful addition to common Python data analysis tools such as pandas, scikit-learn, and matplotlib.

Setup

$ pip3 install Dora
$ python3
>>> from Dora import Dora

Usage

Reading Data & Configuration

# without initial config
>>> dora = Dora()
>>> dora.configure(output = 'A', data = 'path/to/data.csv')

# is the same as
>>> import pandas as pd
>>> dataframe = pd.read_csv('path/to/data.csv')
>>> dora = Dora(output = 'A', data = dataframe)

>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1

Cleaning

# read data with missing and poorly scaled values
>>> import pandas as pd
>>> df = pd.DataFrame([
...   [1, 2, 100],
...   [2, None, 200],
...   [1, 6, None]
... ])
>>> dora = Dora(output = 0, data = df)
>>> dora.data
   0   1    2
0  1   2  100
1  2 NaN  200
2  1   6  NaN

# impute the missing values (using the average of each column)
>>> dora.impute_missing_values()
>>> dora.data
   0  1    2
0  1  2  100
1  2  4  200
2  1  6  150

# scale the values of the input variables (center to mean and scale to unit variance)
>>> dora.scale_input_values()
>>> dora.data
   0         1         2
0  1 -1.224745 -1.224745
1  2  0.000000  1.224745
2  1  1.224745  0.000000

Feature Selection & Extraction

# feature selection / removing a feature
>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1

>>> dora.remove_feature('useless_feature')
>>> dora.data
   A   B  C      D
0  1   2  0   left
1  4 NaN  1  right
2  7   8  2   left

# extract an ordinal feature through one-hot encoding
>>> dora.extract_ordinal_feature('D')
>>> dora.data
   A   B  C  D=left  D=right
0  1   2  0       1        0
1  4 NaN  1       0        1
2  7   8  2       1        0

# extract a transformation of another feature
>>> dora.extract_feature('C', 'twoC', lambda x: x * 2)
>>> dora.data
   A   B  C  D=left  D=right  twoC
0  1   2  0       1        0     0
1  4 NaN  1       0        1     2
2  7   8  2       1        0     4

Visualization

# plot a single feature against the output variable
dora.plot_feature('column-name')

# render plots of each feature against the output variable
dora.explore()

Model Validation

# create random partition of training / validation data (~ 80/20 split)
dora.set_training_and_validation()

# train a model on the data
X = dora.training_data[dora.input_columns()]
y = dora.training_data[dora.output]

some_model.fit(X, y)

# validate the model
X = dora.validation_data[dora.input_columns()]
y = dora.validation_data[dora.output]

some_model.score(X, y)

Data Versioning

# save a version of your data
>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1
>>> dora.snapshot('initial_data')

# keep track of changes to data
>>> dora.remove_feature('useless_feature')
>>> dora.extract_ordinal_feature('D')
>>> dora.impute_missing_values()
>>> dora.scale_input_values()
>>> dora.data
   A         B         C    D=left   D=right
0  1 -1.224745 -1.224745  0.707107 -0.707107
1  4  0.000000  0.000000 -1.414214  1.414214
2  7  1.224745  1.224745  0.707107 -0.707107

>>> dora.logs
["self.remove_feature('useless_feature')", "self.extract_ordinal_feature('D')", 'self.impute_missing_values()', 'self.scale_input_values()']

# use a previous version of the data
>>> dora.snapshot('transform1')
>>> dora.use_snapshot('initial_data')
>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1
>>> dora.logs
[]

# switch back to your transformation
>>> dora.use_snapshot('transform1')
>>> dora.data
   A         B         C    D=left   D=right
0  1 -1.224745 -1.224745  0.707107 -0.707107
1  4  0.000000  0.000000 -1.414214  1.414214
2  7  1.224745  1.224745  0.707107 -0.707107
>>> dora.logs
["self.remove_feature('useless_feature')", "self.extract_ordinal_feature('D')", 'self.impute_missing_values()', 'self.scale_input_values()']

Testing

To run the test suite, simply run python3 spec.py from the Dora directory.

Contribute

Pull requests welcome! Feature requests / bugs will be addressed through issues on this repository. While not every feature request will necessarily be handled by me, maintaining a record for interested contributors is useful.

Additionally, feel free to submit pull requests which add features or address bugs yourself.

License

The MIT License (MIT)

Copyright (c) 2016 Nathan Epstein

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Nathan Epstein
Nathan Epstein
Missing data visualization module for Python.

missingno Messy datasets? Missing values? missingno provides a small toolset of flexible and easy-to-use missing data visualizations and utilities tha

Aleksey Bilogur 3.4k Dec 29, 2022
Simulation du problème de Monty Hall avec Python et matplotlib

Le problème de Monty Hall C'est un jeu télévisé où il y a trois portes sur le plateau de jeu. Seule une de ces portes cache un trésor. Il n'y a rien d

ETCHART YANG 1 Jan 06, 2022
Sprint planner considering JIRA issues and google calendar meetings schedule.

Sprint planner Sprint planner is a Python script for planning your Jira tasks based on your calendar availability. Installation Use the package manage

Apptension 2 Dec 05, 2021
Matplotlib colormaps from the yt project !

cmyt Matplotlib colormaps from the yt project ! Colormaps overview The following colormaps, as well as their respective reversed (*_r) versions are av

The yt project 5 Sep 16, 2022
基于python爬虫爬取COVID-19爆发开始至今全球疫情数据并利用Echarts对数据进行分析与多样化展示。

COVID-19-Epidemic-Map 基于python爬虫爬取COVID-19爆发开始至今全球疫情数据并利用Echarts对数据进行分析与多样化展示。 觉得项目还不错的话欢迎给一个star! 项目的源码可以正常运行,各个库的版本、数据库的建表语句、运行过程中遇到的坑以及解决方式在笔记.md中都

31 Dec 15, 2022
HM02: Visualizing Interesting Datasets

HM02: Visualizing Interesting Datasets This is a homework assignment for CSCI 40 class at Claremont McKenna College. Go to the project page to learn m

Qiaoling Chen 11 Oct 26, 2021
Turn a STAC catalog into a dask-based xarray

StackSTAC Turn a list of STAC items into a 4D xarray DataArray (dims: time, band, y, x), including reprojection to a common grid. The array is a lazy

Gabe Joseph 148 Dec 19, 2022
Small project demonstrating the use of Grafana and InfluxDB for monitoring the speed of an internet connection

Speedtest monitor for Grafana A small project that allows internet speed monitoring using Grafana, InfluxDB 2 and Speedtest. Demo Requirements Docker

Joshua Ghali 3 Aug 06, 2021
Set of matplotlib operations that are not trivial

Matplotlib Snippets This repository contains a set of matplotlib operations that are not trivial. Histograms Histogram with bins adapted to log scale

Raphael Meudec 1 Nov 15, 2021
Print matplotlib colors

mplcolors Tired of searching "matplotlib colors" every week/day/hour? This simple script displays them all conveniently right in your terminal emulato

Brandon Barker 32 Dec 13, 2022
HW_02 Data visualisation task

HW_02 Data visualisation and Matplotlib practice Instructions for HW_02 Idea for data analysis As I was brainstorming ideas and running through databa

9 Dec 13, 2022
Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Tomás Capretto 93 Dec 28, 2022
2D maze path solver visualizer implemented with python

2D maze path solver visualizer implemented with python

SS 14 Dec 21, 2022
This is a learning tool and exploration app made using the Dash interactive Python framework developed by Plotly

Support Vector Machine (SVM) Explorer This app has been moved here. This repo is likely outdated and will not be updated. This is a learning tool and

Plotly 150 Nov 03, 2022
Bar Chart of the number of Senators from each party who are up for election in the next three General Elections

Congress-Analysis Bar Chart of the number of Senators from each party who are up for election in the next three General Elections This bar chart shows

11 Oct 26, 2021
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Data Visualizations for the #30DayChartChallenge

The #30DayChartChallenge This repository contains all the charts made for the #30DayChartChallenge during the month of April. This project aims to exp

Isaac Arroyo 7 Sep 20, 2022
Fast 1D and 2D histogram functions in Python

About Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No nonsense. Numpy's histogram functions are versatile, a

Thomas Robitaille 237 Dec 18, 2022
Generate the report for OCULTest.

Sample report generated in this function Usage example from utils.gen_report import generate_report if __name__ == '__main__': # def generate_rep

Philip Guo 1 Mar 10, 2022
A deceptively simple plotting library for Streamlit

🍅 Plost A deceptively simple plotting library for Streamlit. Because you've been writing plots wrong all this time. Getting started pip install plost

Thiago Teixeira 192 Dec 29, 2022