Tools for exploratory data analysis in Python

Overview

Dora

Exploratory data analysis toolkit for Python.

Contents

Summary

Dora is a Python library designed to automate the painful parts of exploratory data analysis.

The library contains convenience functions for data cleaning, feature selection & extraction, visualization, partitioning data for model validation, and versioning transformations of data.

The library uses and is intended to be a helpful addition to common Python data analysis tools such as pandas, scikit-learn, and matplotlib.

Setup

$ pip3 install Dora
$ python3
>>> from Dora import Dora

Usage

Reading Data & Configuration

# without initial config
>>> dora = Dora()
>>> dora.configure(output = 'A', data = 'path/to/data.csv')

# is the same as
>>> import pandas as pd
>>> dataframe = pd.read_csv('path/to/data.csv')
>>> dora = Dora(output = 'A', data = dataframe)

>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1

Cleaning

# read data with missing and poorly scaled values
>>> import pandas as pd
>>> df = pd.DataFrame([
...   [1, 2, 100],
...   [2, None, 200],
...   [1, 6, None]
... ])
>>> dora = Dora(output = 0, data = df)
>>> dora.data
   0   1    2
0  1   2  100
1  2 NaN  200
2  1   6  NaN

# impute the missing values (using the average of each column)
>>> dora.impute_missing_values()
>>> dora.data
   0  1    2
0  1  2  100
1  2  4  200
2  1  6  150

# scale the values of the input variables (center to mean and scale to unit variance)
>>> dora.scale_input_values()
>>> dora.data
   0         1         2
0  1 -1.224745 -1.224745
1  2  0.000000  1.224745
2  1  1.224745  0.000000

Feature Selection & Extraction

# feature selection / removing a feature
>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1

>>> dora.remove_feature('useless_feature')
>>> dora.data
   A   B  C      D
0  1   2  0   left
1  4 NaN  1  right
2  7   8  2   left

# extract an ordinal feature through one-hot encoding
>>> dora.extract_ordinal_feature('D')
>>> dora.data
   A   B  C  D=left  D=right
0  1   2  0       1        0
1  4 NaN  1       0        1
2  7   8  2       1        0

# extract a transformation of another feature
>>> dora.extract_feature('C', 'twoC', lambda x: x * 2)
>>> dora.data
   A   B  C  D=left  D=right  twoC
0  1   2  0       1        0     0
1  4 NaN  1       0        1     2
2  7   8  2       1        0     4

Visualization

# plot a single feature against the output variable
dora.plot_feature('column-name')

# render plots of each feature against the output variable
dora.explore()

Model Validation

# create random partition of training / validation data (~ 80/20 split)
dora.set_training_and_validation()

# train a model on the data
X = dora.training_data[dora.input_columns()]
y = dora.training_data[dora.output]

some_model.fit(X, y)

# validate the model
X = dora.validation_data[dora.input_columns()]
y = dora.validation_data[dora.output]

some_model.score(X, y)

Data Versioning

# save a version of your data
>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1
>>> dora.snapshot('initial_data')

# keep track of changes to data
>>> dora.remove_feature('useless_feature')
>>> dora.extract_ordinal_feature('D')
>>> dora.impute_missing_values()
>>> dora.scale_input_values()
>>> dora.data
   A         B         C    D=left   D=right
0  1 -1.224745 -1.224745  0.707107 -0.707107
1  4  0.000000  0.000000 -1.414214  1.414214
2  7  1.224745  1.224745  0.707107 -0.707107

>>> dora.logs
["self.remove_feature('useless_feature')", "self.extract_ordinal_feature('D')", 'self.impute_missing_values()', 'self.scale_input_values()']

# use a previous version of the data
>>> dora.snapshot('transform1')
>>> dora.use_snapshot('initial_data')
>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1
>>> dora.logs
[]

# switch back to your transformation
>>> dora.use_snapshot('transform1')
>>> dora.data
   A         B         C    D=left   D=right
0  1 -1.224745 -1.224745  0.707107 -0.707107
1  4  0.000000  0.000000 -1.414214  1.414214
2  7  1.224745  1.224745  0.707107 -0.707107
>>> dora.logs
["self.remove_feature('useless_feature')", "self.extract_ordinal_feature('D')", 'self.impute_missing_values()', 'self.scale_input_values()']

Testing

To run the test suite, simply run python3 spec.py from the Dora directory.

Contribute

Pull requests welcome! Feature requests / bugs will be addressed through issues on this repository. While not every feature request will necessarily be handled by me, maintaining a record for interested contributors is useful.

Additionally, feel free to submit pull requests which add features or address bugs yourself.

License

The MIT License (MIT)

Copyright (c) 2016 Nathan Epstein

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Nathan Epstein
Nathan Epstein
Blender addon that creates a temporary window of any type from the 3D View.

CreateTempWindow2.8 Blender addon that creates a temporary window of any type from the 3D View. Features Can the following window types: 3D View Graph

3 Nov 27, 2022
Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns.

Make Complex Heatmaps Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns. H

Zuguang Gu 973 Jan 09, 2023
This is a sorting visualizer made with Tkinter.

Sorting-Visualizer This is a sorting visualizer made with Tkinter. Make sure you've installed tkinter in your system to use this visualizer pip instal

Vishal Choubey 7 Jul 06, 2022
:art: Diagram as Code for prototyping cloud system architectures

Diagrams Diagram as Code. Diagrams lets you draw the cloud system architecture in Python code. It was born for prototyping a new system architecture d

MinJae Kwon 27.5k Dec 30, 2022
Process dataframe in a easily way.

Popanda Written by Shengxuan Wang at OSU. Used for processing dataframe, especially for machine learning. The name is from "Po" in the movie Kung Fu P

ShawnWang 1 Dec 24, 2021
A research of IT labor market based especially on hh.ru. Salaries, rate of technologies and etc.

hh_ru_research Проект реализован в учебных целях анализа рынка труда, в особенности по hh.ru Input data В качестве входных данных используются сериали

3 Sep 07, 2022
🌀❄️🌩️ This repository contains some examples for creating 2d and 3d weather plots using matplotlib and cartopy libraries in python3.

Weather-Plotting 🌀 ❄️ 🌩️ This repository contains some examples for creating 2d and 3d weather plots using matplotlib and cartopy libraries in pytho

Giannis Dravilas 21 Dec 10, 2022
🎨 Python3 binding for `@AntV/G2Plot` Plotting Library .

PyG2Plot 🎨 Python3 binding for @AntV/G2Plot which an interactive and responsive charting library. Based on the grammar of graphics, you can easily ma

hustcc 990 Jan 05, 2023
Create artistic visualisations with your exercise data (Python version)

strava_py Create artistic visualisations with your exercise data (Python version). This is a port of the R strava package to Python. Examples Facets A

Marcus Volz 53 Dec 28, 2022
Library for exploring and validating machine learning data

TensorFlow Data Validation TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be hig

688 Jan 03, 2023
📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

wq framework 1.2k Jan 01, 2023
Lightweight data validation and adaptation Python library.

Valideer Lightweight data validation and adaptation library for Python. At a Glance: Supports both validation (check if a value is valid) and adaptati

Podio 258 Nov 22, 2022
Easily convert matplotlib plots from Python into interactive Leaflet web maps.

mplleaflet mplleaflet is a Python library that converts a matplotlib plot into a webpage containing a pannable, zoomable Leaflet map. It can also embe

Jacob Wasserman 502 Dec 28, 2022
This is a Boids Simulation, written in Python with Pygame.

PyNBoids A Python Boids Simulation This is a Boids simulation, written in Python3, with Pygame2 and NumPy. To use: Save the pynboids_sp.py file (and n

Nik 17 Dec 18, 2022
Some method of processing point cloud

Point-Cloud Some method of processing point cloud inversion the completion pointcloud to incomplete point cloud Some model of encoding point cloud to

Tan 1 Nov 19, 2021
Visualize tensors in a plain Python REPL using Sparklines

Visualize tensors in a plain Python REPL using Sparklines

Shawn Presser 43 Sep 03, 2022
Displaying plot of death rates from past years in Poland. Data source from these years is in readme

Average-Death-Rate Displaying plot of death rates from past years in Poland The goal collect the data from a CSV file count the ADR (Average Death Rat

Oliwier Szymański 0 Sep 12, 2021
🧇 Make Waffle Charts in Python.

PyWaffle PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts. It provides a Figure constructor class Waffle, which coul

Guangyang Li 528 Jan 02, 2023