Tools for exploratory data analysis in Python

Overview

Dora

Exploratory data analysis toolkit for Python.

Contents

Summary

Dora is a Python library designed to automate the painful parts of exploratory data analysis.

The library contains convenience functions for data cleaning, feature selection & extraction, visualization, partitioning data for model validation, and versioning transformations of data.

The library uses and is intended to be a helpful addition to common Python data analysis tools such as pandas, scikit-learn, and matplotlib.

Setup

$ pip3 install Dora
$ python3
>>> from Dora import Dora

Usage

Reading Data & Configuration

# without initial config
>>> dora = Dora()
>>> dora.configure(output = 'A', data = 'path/to/data.csv')

# is the same as
>>> import pandas as pd
>>> dataframe = pd.read_csv('path/to/data.csv')
>>> dora = Dora(output = 'A', data = dataframe)

>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1

Cleaning

# read data with missing and poorly scaled values
>>> import pandas as pd
>>> df = pd.DataFrame([
...   [1, 2, 100],
...   [2, None, 200],
...   [1, 6, None]
... ])
>>> dora = Dora(output = 0, data = df)
>>> dora.data
   0   1    2
0  1   2  100
1  2 NaN  200
2  1   6  NaN

# impute the missing values (using the average of each column)
>>> dora.impute_missing_values()
>>> dora.data
   0  1    2
0  1  2  100
1  2  4  200
2  1  6  150

# scale the values of the input variables (center to mean and scale to unit variance)
>>> dora.scale_input_values()
>>> dora.data
   0         1         2
0  1 -1.224745 -1.224745
1  2  0.000000  1.224745
2  1  1.224745  0.000000

Feature Selection & Extraction

# feature selection / removing a feature
>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1

>>> dora.remove_feature('useless_feature')
>>> dora.data
   A   B  C      D
0  1   2  0   left
1  4 NaN  1  right
2  7   8  2   left

# extract an ordinal feature through one-hot encoding
>>> dora.extract_ordinal_feature('D')
>>> dora.data
   A   B  C  D=left  D=right
0  1   2  0       1        0
1  4 NaN  1       0        1
2  7   8  2       1        0

# extract a transformation of another feature
>>> dora.extract_feature('C', 'twoC', lambda x: x * 2)
>>> dora.data
   A   B  C  D=left  D=right  twoC
0  1   2  0       1        0     0
1  4 NaN  1       0        1     2
2  7   8  2       1        0     4

Visualization

# plot a single feature against the output variable
dora.plot_feature('column-name')

# render plots of each feature against the output variable
dora.explore()

Model Validation

# create random partition of training / validation data (~ 80/20 split)
dora.set_training_and_validation()

# train a model on the data
X = dora.training_data[dora.input_columns()]
y = dora.training_data[dora.output]

some_model.fit(X, y)

# validate the model
X = dora.validation_data[dora.input_columns()]
y = dora.validation_data[dora.output]

some_model.score(X, y)

Data Versioning

# save a version of your data
>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1
>>> dora.snapshot('initial_data')

# keep track of changes to data
>>> dora.remove_feature('useless_feature')
>>> dora.extract_ordinal_feature('D')
>>> dora.impute_missing_values()
>>> dora.scale_input_values()
>>> dora.data
   A         B         C    D=left   D=right
0  1 -1.224745 -1.224745  0.707107 -0.707107
1  4  0.000000  0.000000 -1.414214  1.414214
2  7  1.224745  1.224745  0.707107 -0.707107

>>> dora.logs
["self.remove_feature('useless_feature')", "self.extract_ordinal_feature('D')", 'self.impute_missing_values()', 'self.scale_input_values()']

# use a previous version of the data
>>> dora.snapshot('transform1')
>>> dora.use_snapshot('initial_data')
>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1
>>> dora.logs
[]

# switch back to your transformation
>>> dora.use_snapshot('transform1')
>>> dora.data
   A         B         C    D=left   D=right
0  1 -1.224745 -1.224745  0.707107 -0.707107
1  4  0.000000  0.000000 -1.414214  1.414214
2  7  1.224745  1.224745  0.707107 -0.707107
>>> dora.logs
["self.remove_feature('useless_feature')", "self.extract_ordinal_feature('D')", 'self.impute_missing_values()', 'self.scale_input_values()']

Testing

To run the test suite, simply run python3 spec.py from the Dora directory.

Contribute

Pull requests welcome! Feature requests / bugs will be addressed through issues on this repository. While not every feature request will necessarily be handled by me, maintaining a record for interested contributors is useful.

Additionally, feel free to submit pull requests which add features or address bugs yourself.

License

The MIT License (MIT)

Copyright (c) 2016 Nathan Epstein

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Nathan Epstein
Nathan Epstein
Generate "Jupiter" plots for circular genomes

jupiter Generate "Jupiter" plots for circular genomes Description Python scripts to generate plots from ViennaRNA output. Written in "pidgin" python w

Robert Edgar 2 Nov 29, 2021
Create animated and pretty Pandas Dataframe or Pandas Series

Rich DataFrame Create animated and pretty Pandas Dataframe or Pandas Series, as shown below: Installation pip install rich-dataframe Usage Minimal exa

Khuyen Tran 92 Dec 26, 2022
This project is an Algorithm Visualizer where a user can visualize algorithms like Bubble Sort, Merge Sort, Quick Sort, Selection Sort, Linear Search and Binary Search.

Algo_Visualizer This project is an Algorithm Visualizer where a user can visualize common algorithms like "Bubble Sort", "Merge Sort", "Quick Sort", "

Rahul 4 Feb 07, 2022
Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python

Petrel Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python. NOTE: The base Storm package provides storm.py, which

AirSage 247 Dec 18, 2021
Graphing communities on Twitch.tv in a visually intuitive way

VisualizingTwitchCommunities This project maps communities of streamers on Twitch.tv based on shared viewership. The data is collected from the Twitch

Kiran Gershenfeld 312 Jan 07, 2023
Set of matplotlib operations that are not trivial

Matplotlib Snippets This repository contains a set of matplotlib operations that are not trivial. Histograms Histogram with bins adapted to log scale

Raphael Meudec 1 Nov 15, 2021
Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects

carcassonne_tools Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects NOTE NOTE NOTE The

1 Nov 08, 2021
An easy to use burndown chart generator for GitHub Project Boards.

Burndown Chart for GitHub Projects An easy to use burndown chart generator for GitHub Project Boards. Table of Contents Features Installation Assumpti

Joseph Hale 15 Dec 28, 2022
This is a Boids Simulation, written in Python with Pygame.

PyNBoids A Python Boids Simulation This is a Boids simulation, written in Python3, with Pygame2 and NumPy. To use: Save the pynboids_sp.py file (and n

Nik 17 Dec 18, 2022
DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

1 Jan 03, 2022
A way of looking at COVID-19 data that I haven't seen before.

Visualizing Omicron: COVID-19 Deaths vs. Cases Click here for other countries. Data is from Our World in Data/Johns Hopkins University. About this pro

1 Jan 10, 2022
cqMore is a CadQuery plugin based on CadQuery 2.1.

cqMore (under construction) cqMore is a CadQuery plugin based on CadQuery 2.1. Installation Please use conda to install CadQuery and its dependencies

Justin Lin 36 Dec 21, 2022
HM02: Visualizing Interesting Datasets

HM02: Visualizing Interesting Datasets This is a homework assignment for CSCI 40 class at Claremont McKenna College. Go to the project page to learn m

Qiaoling Chen 11 Oct 26, 2021
A python script to visualise explain plans as a graph using graphviz

README Needs to be improved Prerequisites Need to have graphiz installed on the machine. Refer to https://graphviz.readthedocs.io/en/stable/manual.htm

Edward Mallia 1 Sep 28, 2021
Python implementation of the Density Line Chart by Moritz & Fisher.

PyDLC - Density Line Charts with Python Python implementation of the Density Line Chart (Moritz & Fisher, 2018) to visualize large collections of time

Charles L. Bérubé 10 Jan 06, 2023
Python+Numpy+OpenGL: fast, scalable and beautiful scientific visualization

Python+Numpy+OpenGL: fast, scalable and beautiful scientific visualization

Glumpy 1.1k Jan 05, 2023
Data parsing and validation using Python type hints

pydantic Data validation and settings management using Python type hinting. Fast and extensible, pydantic plays nicely with your linters/IDE/brain. De

Samuel Colvin 12.1k Jan 06, 2023
1900-2016 Olympic Data Analysis in Python by plotting different graphs

🔥 Olympics Data Analysis 🔥 In Data Science field, there is a big topic before creating a model for future prediction is Data Analysis. We can find o

Sayan Roy 1 Feb 06, 2022
Application for viewing pokemon regional variants.

Pokemon Regional Variants Application Application for viewing pokemon regional variants. Run The Source Code Download Python https://www.python.org/do

Michael J Bailey 4 Oct 08, 2021