NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

Overview

NeuralWOZ

This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation".

Sungdong Kim, Minsuk Chang, Sang-woo Lee
In ACL 2021.

Citation

@inproceedings{kim2021neuralwoz,
  title={NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation},
  author={Kim, Sungdong and Chang, Minsuk and Lee, Sang-woo},
  booktitle={ACL},
  year={2021}
}

Requirements

python3.6
torch==1.4.0
transformers==2.11.0

Please install apex for the mixed precision training.
See details in requirements.txt

Data Download and Preprocessing

1. Download dataset

Please run this script at first. It will create data repository, and save and preprocess MultiWOZ 2.1 dataset.

python3 create_data.py

2. Preprocessing

To train NeuralWOZ under various settings, you should create each training instances with running below script.

python3 neuralwoz/preprocess.py --exceptd $TARGET_DOMAIN --fewshot_ratio $FEWSHOT_RATIO
  • exceptd: Specify "target domain" to exclude from training dataset for leave-one-out scheme. It is one of the (hotel|restaurant|attraction|train|taxi).
  • fewshot_ratio: Choose proportion of examples in the target domain to include. Default is 0. which means zero-shot. It is one of the (0.|0.01|0.05|0.1). You can check the fewshot examples in the assets/fewshot_key.json.

This script will create "$TARGET_DOMAIN_$FEWSHOT_RATIO_collector_(train|dev).json" and "$TARGET_DOMAIN_$FEWSHOT_RATIO_labeler_train.h5".

Training NeuralWOZ

You should specify output_path to save the trained model.
Each output consists of the below four files after the training.

  • pytorch_model.bin
  • config.json
  • vocab.json
  • merges.txt

For each zero/few-shot settings, you should set the TRAIN_DATA and DEV_DATA from the preprocessing. For example, hotel_0.0_collector_(train|dev).json should be used for the Collector training when the target domain is hotel in the zero-shot domain transfer task.

We use N_GPU=4 and N_ACCUM=2 for Collector training and N_GPU=2 and N_ACCUM=2 for Labeler training to fit 32 for batch size based on V100 32GB GPU.

1. Collector

python3 neuralwoz/train_collector.py \
  --dataset_dir data \
  --output_path $OUTPUT_PATH \
  --model_name_or_path facebook/bart-large \
  --train_data $TRAIN_DATA \
  --dev_data $DEV_DATA \
  --n_gpu $N_GPU \
  --per_gpu_train_batch_size 4 \
  --num_train_epochs 30 \
  --learning_rate 1e-5 \
  --gradient_accumulation_steps $N_ACCUM \
  --warmup_steps 1000 \
  --fp16

2. Labeler

python3 neuralwoz/train_labeler.py \
  --dataset_dir data \
  --output_path $OUTPUT_PATH \
  --model_name_or_path roberta-base-dream \
  --train_data $TRAIN_DATA \
  --dev_data labeler_dev_data.json \
  --n_gpu $N_GPU \
  --per_gpu_train_batch_size 8 \
  --num_train_epochs 10 \
  --learning_rate 1e-5 \
  --gradient_accumulation_steps $N_ACCUM \
  --warmup_steps 1000 \
  --beta 5. \
  --fp16

Download Synthetic Dialogues from NeuralWOZ

Please download synthetic dialogues from here

  • The naming convention is nwoz_{target_domain}_{fewshot_proportion}.json
  • Each dataset contains synthesized dialogues from our NeuralWOZ
  • Specifically, It contains synthetic dialogues for the target_domain while excluding original dialogues for the target domain (leave-one-out setup)
  • You can check the i-th synthesized dialogue in each files with aug_{target_domain}_{fewshot_proprotion}_{i} for dialogue_idx key.
  • You can use the json file to directly train zero/few-shot learner for DST task
  • Please see readme for training TRADE and readme for training SUMBT using the dataset
  • If you want to synthesize your own dialogues, please see below sections.

Download Pretrained Models

Pretrained models are available in this link. The naming convention is like below

  • NEURALWOZ: (Collector|Labeler)_{target_domain}_{fewshot_proportion}.tar.gz
  • TRADE: nwoz_TRADE_{target_domain}_{fewshot_proportion}.tar.gz
  • SUMBT: nwoz_SUMBT_{target_domain}_{fewshot_proportion}.tar.gz

To synthesize your own dialogues, please download and unzip both of Collector and Labeler in same target domain and fewshot_proportion at $COLLECTOR_PATH and $LABELER_PATH, repectively.

Please use tar -zxvf MODEL.tar.gz for the unzipping.

Generate Synthetic Dialogues using NeuralWOZ

python3 neuralwoz/run_neuralwoz.py \
  --dataset_dir data \
  --output_dir data \
  --output_file_name neuralwoz-output.json \
  --target_data collector_dev_data.json \
  --include_domain $TARGET_DOMAIN \
  --collector_path $COLLECTOR_PATH \
  --labeler_path $LABELER_PATH \
  --num_dialogues $NUM_DIALOGUES \
  --batch_size 16 \
  --num_beams 1 \
  --top_k 0 \
  --top_p 0.98 \
  --temperature 0.9 \
  --include_missing_dontcare

License

Copyright 2021-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022