Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Overview

Joint Learning of 3D Shape Retrieval and Deformation

Joint Learning of 3D Shape Retrieval and Deformation

Mikaela Angelina Uy, Vladimir G. Kim, Minhyuk Sung, Noam Aigerman, Siddhartha Chaudhuri and Leonidas Guibas

CVPR 2021

pic-network

Introduction

We propose a novel technique for producing high-quality 3D models that match a given target object image or scan. Our method is based on retrieving an existing shape from a database of 3D models and then deforming its parts to match the target shape. Unlike previous approaches that independently focus on either shape retrieval or deformation, we propose a joint learning procedure that simultaneously trains the neural deformation module along with the embedding space used by the retrieval module. This enables our network to learn a deformation-aware embedding space, so that retrieved models are more amenable to match the target after an appropriate deformation. In fact, we use the embedding space to guide the shape pairs used to train the deformation module, so that it invests its capacity in learning deformations between meaningful shape pairs. Furthermore, our novel part-aware deformation module can work with inconsistent and diverse part structures on the source shapes. We demonstrate the benefits of our joint training not only on our novel framework, but also on other state-of-the-art neural deformation modules proposed in recent years. Lastly, we also show that our jointly-trained method outperforms various non-joint baselines. Our project page can be found here, and the arXiv version of our paper can be found here.

@inproceedings{uy-joint-cvpr21,
      title = {Joint Learning of 3D Shape Retrieval and Deformation},
      author = {Mikaela Angelina Uy and Vladimir G. Kim and Minhyuk Sung and Noam Aigerman and Siddhartha Chaudhuri and Leonidas Guibas},
      booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
      year = {2021}
  }

Data download and preprocessing details

Dataset downloads can be found in the links below. These should be extracted in the project home folder.

  1. Raw source shapes are here.

  2. Processed h5 and pickle files are here.

  3. Targets:

    • [Optional] (already processed in h5) point cloud
    • Images: chair, table, cabinet. You also need to modify the correct path for IMAGE_BASE_DIR in the image training and evaluation scripts.
  4. Automatic segmentation (ComplementMe)

    • Source shapes are here.
    • Processed h5 and pickle files are here.

For more details on the pre-processing scripts, please take a look at run_preprocessing.py and generate_combined_h5.py. run_preprocessing.py includes the details on how the connectivity constraints and projection matrices are defined. We use the keypoint_based constraint to define our source model constraints in the paper.

The renderer used throughout the project can be found here. Please modify the paths, including the input and output directories, accordingly at global_variables.py if you want to process your own data.

Pre-trained Models

The pretrained models for Ours and Ours w/ IDO, which uses our joint training approach can be found here. We also included the pretrained models of our structure-aware deformation-only network, which are trained on random source-target pairs used to initialize our joint training.

Evaluation

Example commands to run the evaluation script are as follows. The flags can be changed as desired. --mesh_visu renders the output results into images, remove the flag to disable the rendering. Note that --category is the object category and the values should be set to "chair", "table", "storagefurniture" for classes chair, table and cabinet, respectively.

For point clouds:

python evaluate.py --logdir=ours_ido_pc_chair/ --dump_dir=dump_ours_ido_pc_chair/ --joint_model=1 --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --use_keypoint=1 --mesh_visu=1

python evaluate_recall.py --logdir=ours_ido_pc_chair/ --dump_dir=dump_ours_ido_pc_chair/ --category=chair

For images:

python evaluate_images.py --logdir=ours_ido_img_chair/ --dump_dir=dump_ours_ido_img_chair/ --joint_model=1 --use_connectivity=1 --category=chair --use_src_encoder_retrieval=1 --use_keypoint=1 --mesh_visu=1

python evaluate_images_recall.py --logdir=ours_ido_img_chair/ --dump_dir=dump_ours_ido_img_chair/ --category=chair

Training

  • To train deformation-only networks on random source-target pairs, example commands are as follows:
# For point clouds
python train_deformation_final.py --logdir=log/ --dump_dir=dump/ --to_train=1 --use_connectivity=1 --category=chair --use_keypoint=1 --use_symmetry=1

# For images
python train_deformation_images.py --logdir=log/ --dump_dir=dump/ --to_train=1 --use_connectivity=1 --category=storagefurniture --use_keypoint=1 --use_symmetry=1
  • To train our joint models without IDO (Ours), example commands are as follows:
# For point clouds
python train_region_final.py --logdir=log/ --dump_dir=dump/ --to_train=1 --init_deformation=1 --loss_function=regression --distance_function=mahalanobis --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --model_init=df_chair_pc/ --selection=retrieval_candidates --use_keypoint=1 --use_symmetry=1

# For images
python train_region_images.py --logdir=log/ --dump_dir=dump/ --to_train=1 --use_connectivity=1 --selection=retrieval_candidates --use_src_encoder_retrieval=1 --category=chair --use_keypoint=1 --use_symmetry=1 --init_deformation=1 --model_init=df_chair_img/
  • To train our joint models with IDO (Ours w/ IDO), example commands are as follows:
# For point clouds
python joint_with_icp.py --logdir=log/ --dump_dir=dump/ --to_train=1 --loss_function=regression --distance_function=mahalanobis --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --model_init=df_chair_pc/ --selection=retrieval_candidates --use_keypoint=1 --use_symmetry=1 --init_deformation=1 --use_icp_pp=1 --fitting_loss=l2

# For images
python joint_icp_images.py --logdir=log/ --dump_dir=dump/ --to_train=1 --init_joint=1 --loss_function=regression --distance_function=mahalanobis --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --model_init=df_chair_img/ --selection=retrieval_candidates --use_keypoint=1 --use_symmetry=1 --init_deformation=1 --use_icp_pp=1 --fitting_loss=l2

Note that our joint training approach is used by setting the flag --selection=retrieval_candidates=1.

Related Work

This work and codebase is related to the following previous work:

License

This repository is released under MIT License (see LICENSE file for details).

Owner
Mikaela Uy
CS PhD Student
Mikaela Uy
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

Leo 21 Nov 23, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023